Methanothermobacter marburgensis explained
Methanothermobacter marburgensis is a thermophilic and obligately autotrophic methanogenic archaeon. The type strain MarburgT was isolated from sewage sludge in the vicinity of the city Marburg, Germany[1] . It was also detected in hot springs. It grows in the temperature between 45 and 70 °C with optimum at 65 °C thus it is classified as thermophile. Cells are rods with length 3 - 3.5 µm and 0.3 - 0.4 µm wide, Gram-positive and non-motile. Its genome has been sequenced.[2]
They reduce carbon dioxide with hydrogen into methane as the only pathway for ATP production. It does not require any organic supplements and it grows on mineral media with CO2 as a carbon source, H2 as a source of electrons, NH3 as a nitrogen source, and sulfide as a sulfur source (obligate autotroph). The metabolism of Methanothermobacter marburgensis strain Marburg has been reconstructed in the form of an experimentally validated computer model.[3]
Further reading
- Ding. Xia. Yang. Wei-Jun. Min. Hang. Peng. Xiao-Tong. Zhou. Huai-Yang. Lu. Zhen-Mei. Isolation and characterization of a new strain of Methanothermobacter marburgensis DX01 from hot springs in China. Anaerobe. 16. 1. 2010. 54–59. 1075-9964. 10.1016/j.anaerobe.2009.04.001. 19376257.
- Book: Duin. Evert C.. Methods in Methane Metabolism, Part A. Prakash. Divya. Brungess. Charlene. Methyl-Coenzyme M Reductase from Methanothermobacter marburgensis. 494. 2011. 159–187. 0076-6879. 10.1016/B978-0-12-385112-3.00009-3. 21402215. Methods in Enzymology. 9780123851123.
- Rittmann. S.. Seifert. A.. Herwig. C.. Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H-2 and CO2. Biomass and Bioenergy. Jan 2012. 36. 293–301. 10.1016/j.biombioe.2011.10.038.
- Kaster. Anne-Kristin. Goenrich. Meike. Seedorf. Henning. Liesegang. Heiko. Wollherr. Antje. Gottschalk. Gerhard. Thauer. Rudolf K.. Lowe. Todd M.. More Than 200 Genes Required for Methane Formation from H2 and CO2 and Energy Conservation Are Present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea. 2011. 18 February 2011. 23. 10.1155/2011/973848. 21559116. 1472-3646. 973848. 3087415. free.
- Vitt. Stella. Ma. Kesen. Warkentin. Eberhard. Moll. Johanna. Pierik. Antonio J.. Shima. Seigo. Ermler. Ulrich. The F-420-Reducing [NiFe]-Hydrogenase Complex from Methanothermobacter marburgensis, the First X-ray Structure of a Group 3 Family Member. Journal of Molecular Biology. 29 July 2014. 426. 15. 2813–2826. 10.1016/j.jmb.2014.05.024. 24887099. free.
External links
Notes and References
- Wasserfallen . A. . Nolling . J. . Pfister . P. . Reeve . J. . Conway de Macario . E. . 2000 . Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov . International Journal of Systematic and Evolutionary Microbiology . 50 . 1 . 43–53 . 10.1099/00207713-50-1-43 . 1466-5026 . 10826786 . free.
- Liesegang. H.. Kaster. A.-K.. Wiezer. A.. Goenrich. M.. Wollherr. A.. Seedorf. H.. Gottschalk. G.. Thauer. R. K.. Complete Genome Sequence of Methanothermobacter marburgensis, a Methanoarchaeon Model Organism. Journal of Bacteriology. 192. 21. 2010. 5850–5851. 0021-9193. 10.1128/JB.00844-10. 20802048. 2953689.
- Casini . Isabella. McCubbin . Tim. Esquivel-Elizondo . Sofia. Luque . Guillermo G.. Evseeva . Daria. Fink . Christian. Beblawy . Sebastian. Youngblut . Nicholas D.. Aristilde . Ludmilla. Huson . Daniel H.. Dräger . Andreas. Ley . Ruth E.. Marcellin . Esteban. Angenent . Largus T.. Molitor . Bastian. Andreas Dräger. Ruth E. Ley. Lars T. Angenent. 2023. An integrated systems-biology approach reveals differences in formate metabolism in the genus Methanothermobacter. iScience. 10.1016/j.isci.2023.108016. 10579436 . free.