Metamonad Explained
The metamonads are a large group of flagellate amitochondriate microscopic eukaryotes. Their composition is not entirely settled, but they include the retortamonads, diplomonads, and possibly the parabasalids and oxymonads as well. These four groups are all anaerobic (many being aerotolerant anaerobes), occurring mostly as symbiotes or parasites of animals, as is the case with Giardia lamblia which causes diarrhea in mammals.[1]
Characteristics
A number of parabasalids and oxymonads are found in termite guts, and play an important role in breaking down the cellulose found in wood. Some other metamonads are parasites.
These flagellates are unusual in lacking mitochondria. Originally they were considered among the most primitive eukaryotes, diverging from the others before mitochondria appeared. However, they are now known to have lost mitochondria secondarily, and retain both organelles and nuclear genes derived from them. Mitochondrial relics include hydrogenosomes, which produce hydrogen, and small structures called mitosomes.
It now appears the Metamonada are, together with Malawimonas, sister clades of the Podiata.[2]
All of these groups are united by having flagella or basal bodies in characteristic groups of four, which are often associated with the nucleus, forming a structure called a karyomastigont. In addition, the genera Carpediemonas and Trimastix are now known to be close relatives of the retortamonad-diplomonad line and the oxymonads, respectively. Both are free-living and amitochondriate.
Classification
The metamonads were thought to make up part of the Excavata, a paraphyletic eukaryotic supergroup including flagellates with feeding grooves and their close relatives. Their relationships are uncertain,[3] and they do not always appear together on molecular trees. It is possible that the metamonads as defined here do not form a monophyletic subgroup.
The following higher level treatment from 2013 is based on works of Cavalier-Smith[4] with amendments within Fornicata from Yubukia, Simpson & Leander.[5]
Metamonada were once again proposed to be basal eukaryotes in 2018.[6]
- Phylum Metamonada (Grassé 1952) Cavalier-Smith 1987 emend. Cavalier-Smith 2003
- Family Anaeramoebidae Táborský, Pánek & Čepička 2017
- Subphylum Anaeromonada Cavalier-Smith 1997 emend. 2003
- Class Anaeromonadea Cavalier-Smith 1997 emend. 1999
- Family Paratrimastigidae Zhang et al. 2015[7]
- Order Trimastigida Cavalier-Smith 2003
- Order Oxymonadida Grassé 1952 emend. Cavalier-Smith 2003
- Family Polymastigidae Bütschli 1884
- Family Saccinobaculidae Brugerolle & Lee 2002 ex Cavalier-Smith 2013
- Family Pyrsonymphidae Grassé 1892
- Family Oxymonadidae Kirby 1928
- Subphylum Trichozoa Cavalier-Smith 1996 emend. Cavalier-Smith 2003 stat. n. 2013
- Superclass Fornicata Simpson 2003 stat. n. Cavalier-Smith 2013
- Family Kipferliidae Cavalier-Smith 2013
- Class Carpediemonadea Cavalier-Smith 2013 s.s.
- Order Carpediemonadida Cavalier-Smith 2003 emend. 2013 s.s.
- Family Carpediemonadidae Cavalier-Smith 2003
- Class Eopharyngea Cavalier-Smith 1993 stat. n. Cavalier-Smith 2003
- Order Dysnectida Cavalier-Smith 2013
- Family Dysnectidae Cavalier-Smith 2013
- Order Retortamonadida Grassé 1952 emend. Cavalier-Smith 2013
- Order Diplomonadida Wenyon 1926 emend. Brugerolle et al. 1975
- Family Giardiidae Kulda & Nohy´nkova´ 1978
- Family Octomitidae Cavalier-Smith 1996
- Family Spironucleidae Cavalier-Smith 1996
- Family Hexamitidae Kent 1880 emend. Brugerolle et al. 1975
- Superclass Parabasalia Honigberg 1973 stat. n. Cavalier-Smith 2003
- Class Trichonymphea Cavalier-Smith 2003
- Order Lophomonadida Light 1927
- Family Lophomonadidae Saville Kent 1880
- Order Trichonymphida Poche 1913
- Family †Burmanymphidae Poinar 2009
- Family Retractinymphidae Radek & Brune 2023[8]
- Family Spirotrichosomidae Hollande & Caruette-Valentin 1971
- Family Staurojoeninidae Grassé 1917
- Family Trichonymphidae Saville Kent 1880
- Family Hoplonymphidae Light 1926
- Family Teratonymphidae Koidzumi 1921 [Eucomonymphidae]
- Class Trichomonadea Kirby 1947 stat. n. Cavalier-Smith 2003
- Order Pimpavickida Céza & Čepička 2022[9]
- Family Pimpavickidae Céza & Čepička 2022
- Order Trichomonadida Kirby 1947
- Family Lacusteriidae Céza & Čepička 2022[9]
- Family Trichomonadidae Chalmers & Pekkoloa 1918 sensu Hampl et al. 2006
- Order Honigbergiellida Čepička et al. 2010[10] [9]
- Family Honigbergiellidae Čepička, Hampl & Kulda 2010
- Family Hexamastigidae Čepička, Hampl & Kulda 2010
- Family Tricercomitidae Čepička, Hampl & Kulda 2010
- Order Hypotrichomonadida Čepička et al. 2010
- Family Hypotrichomonadidae (Honigberg 1963) Čepička, Hampl & Kulda 2010
- Order Spirotrichonymphida Grassé 1952
- Family Spirotrichonymphidae Grassé 1917
- Order Tritrichomonadida Čepička et al. 2010
- Family Dientamoebidae Grassé 1953
- Family Monocercomonadidae Kirby 1944
- Family Simplicimonadidae Čepička et al. 2010
- Family Tritrichomonadidae Honigberg 1963
- Order Cristamonadida Brugerolle & Patterson 2001 emend. Cavalier-Smith 2013
- Family Calonymphidae Grassé 1911
- Family Devescovinidae Doflein 1911
External links
Notes and References
- Al Jewari . Caesar . Baldauf . Sandra L. . 2023-04-28 . An excavate root for the eukaryote tree of life . Science Advances . 9 . 17 . eade4973 . 10.1126/sciadv.ade4973 . 2375-2548 . 10146883 . 37115919. 2023SciA....9E4973A .
- Cavalier-Smith. Thomas. Chao. Ema E.. Lewis. Rhodri. 2016-06-01. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Molecular Phylogenetics and Evolution. 99. 275–296. 10.1016/j.ympev.2016.03.023. 27001604. free.
- Cavalier-Smith T . The excavate protozoan phyla Metamonada Grassé emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa . Int. J. Syst. Evol. Microbiol. . 53 . Pt 6 . 1741–58 . November 2003 . 14657102 . 10.1099/ijs.0.02548-0. free .
- Cavalier-Smith T . Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa . Eur. J. Protistol. . 49 . 2 . 115–178 . 2013 . 23085100 . 10.1016/j.ejop.2012.06.001 .
- Yubukia . Simpson . Leander . Comprehensive Ultrastructure of Kipferlia bialata Provides Evidence for Character Evolution within the Fornicata (Excavata) . Protist . 164. 3. 423–439. 2013 . 23517666. 10.1016/j.protis.2013.02.002 .
- Krishnan. Arunkumar. Burroughs. A. Max . Iyer . Lakshminarayan. Aravind. L.. 2018-07-04. The unexpected provenance of components in eukaryotic nucleotide-excision-repair and kinetoplast DNA-dynamics from bacterial mobile elements. bioRxiv . 361121 . 10.1101/361121 . free.
- Zhang . Qianqian . Táborský . Petr . Silberman . Jeffrey D. . Pánek . Tomáš . Čepička . Ivan . Simpson. Alastair G.B. . 2015 . Marine Isolates of Trimastix marina Form a Plesiomorphic Deep-branching Lineage within Preaxostyla, Separate from Other Known Trimastigids (Paratrimastix n. gen.) . Protist . 166 . 4 . 468–491 . 10.1016/j.protis.2015.07.003 . 26312987 .
- Radek . Renate . Platt . Katja . Öztas . Deniz . Šobotník . Jan . Sillam-Dussès . David . Hanus . Robert . Brune . Andreas . New insights into the coevolutionary history of termites and their gut flagellates: Description of Retractinympha glossotermitis gen. nov. sp. nov. (Retractinymphidae fam. nov.) . Frontiers in Ecology and Evolution . 26 January 2023 . 11 . 10.3389/fevo.2023.1111484 . free .
- Céza . Vít . Kotyk . Michael . Kubánková . Aneta . Yubuki . Naoji . Šťáhlavský . František . Silberman . Jeffrey D. . Čepička . Ivan . Free-living Trichomonads are Unexpectedly Diverse . Protist . August 2022 . 173 . 4 . 125883 . 10.1016/j.protis.2022.125883. 35660751 . 248586911 .
- Cepicka . Ivan . Hampl . Vladimír . Kulda . Jaroslav . Critical Taxonomic Revision of Parabasalids with Description of one New Genus and three New Species . Protist . July 2010 . 161 . 3 . 400–433 . 10.1016/j.protis.2009.11.005. 20093080 .