Meier Eidelheit Explained

Eidelheit, Meier
Birth Date:1910 7, df=yes
Birth Place:Janów
Nationality:Polish
Field:Mathematics
Work Institutions:University of Lwów
Alma Mater:Technical University of Lwów
Doctoral Advisors:Stefan Banach
Known For:Eidelheit separation theorem (1936),
Eidelheit interpolation theorem (1936),
Eidelheit theorem concerning rings of continuous functions (1940)

Meier "Maks" Eidelheit(6 July 1910 – March 1943)was a Polish mathematician belonging to the Lwów School of Mathematics who worked in Lwów and was murdered in the Holocaust.

Biography

Meier Eidelheit left the Lwów Gymnasium in 1929 and then studied mathematics at the scientific faculty in Lwów, completing his study in 1933 with a thesis on the theory of summation.In 1938, with Stefan Banach as supervisor, he gained a doctorate from the Jan-Kazimierz-University of Lwów with a Dissertation über die Auflösbarkeit eines linearen Gleichungssystems mit unendlich vielen Unbekannten.[1] From 1933 to 1939 he gave private lectures;from 31 January 1939 onwards he was an Assistant Professor of Analysis,from 21 March 1941 he was candidate for a professorship.[2] He worked mainly on Functional analysis.On the basis of his 1936 paper on convex sets in linear normed spaces,geometric versions of the hyperplane separation theorem are also known (in German) as Trennungssatz von Eidelheit (Eidelheit separation theorem).[3] A theorem on the solubility of certain infinite systems of equations in Fréchet spaces is also named after him.[4]

Eidelheit published six papers in Studia Mathematica from 1936 to 1940;[5] [6] [7] [8] [9] [10] a seventh was printed posthumously.[11] Eidelheit was an active contributor to the Scottish Book, posing problems 172, 173, 174, 176 and 188[12] and answering problem 26 (Mazur), 64 (Mazur),[5] [13] 162 (Steinhaus), and 176 (Eidelheit).

Meier Eidelheit was murdered in the Holocaust in March 1943.His posthumously published article Quelques remarques sur les fonctionelles linéaires in volume 10 of the Studia Mathematica was prefaced with the following lines:"L’auteur de ce travail a été assassiné par les Allemands en mars de 1943. Le manuscrit qu’il fut parvenir à la Rédaction en 1941 a été retrouvé récemment entre les papiers laissés par S. Banach."(in English: The author of this work was murdered in March 1943 by the Germans.The manuscript, which reached the editors in 1941, was recently found among the writings left by S. Banach.)[11]

See also

References

Notes and References

  1. Web site: Topology Atlas: Meier (Maks) Eidelheit (1910–1943) . https://web.archive.org/web/20150402142919/http://atlas-conferences.com/c/b/e/g/34.htm . 2015-04-02 . Lech . Maligranda .
  2. Web site: Ярослав Григорович Притула . До 100-річчя з Дня народження Айдельгайт Майєр . On Meier Eidelheit's 100th Birthday . https://web.archive.org/web/20150402111957/https://www.franko.lviv.ua/faculty/mechmat/history/meier.html . 2015-04-02 . 2016-02-22 . uk . (with picture)
  3. Book: Peter . Kosmol . Optimierung und Approximation . Optimisation and Approximation . de . . 2010 . 978-3-11-021814-5 . 11.3: Trennungssatz von Eidelheit.
  4. Book: R. Meise . D. Vogt . Einführung in die Funktionalanalysis . Introduction to functional analysis . de . Vieweg . 1992 . 3-528-07262-8 ., Satz 26.27 Satz von Eidelheit
  5. M. . Eidelheit . Zur Theorie der konvexen Mengen in linearen normierten Räumen . de . On the theory of convex sets in linear normed spaces . . 6 . 1936 . 104–111.
  6. M. . Eidelheit . Über lineare Gleichungen in separablen Räumen . de . On linear equations in separable spaces . . 6 . 1936 . 117–138.
  7. M. . Eidelheit . Zur Theorie der Systeme linearer Gleichungen . de . On the theory of systems of linear equations . . 6 . 1936 . 139–148.
  8. M. . Eidelheit . Zur Theorie der Systeme linearer Gleichungen (II) . de . On the theory of systems of linear equations (II) . . 7 . 1938 . 150–154–.
  9. M. . Eidelheit . Über lineare Gleichungen in separablen Räumen (II) . de . On linear equations in separable spaces (II) . . 8 . 1939 . 154–169.
  10. M. . Eidelheit . On isomorphisms of rings of linear operators . . 9 . 1940 . 97–105 .
  11. M. . Eidelheit . Quelques remarques sur les fonctionelles linéaires . fr . . . 10 . 1948 . 140–147 .
  12. L. Maligranda . V. Mykhaylyuk . A. Plichko . On a problem of Eidelheit from The Scottish Book concerning absolutely continuous functions . Journal of Mathematical Analysis and Applications . 10.1016/j.jmaa.2010.09.027 . . 375 . 2 . 2011 . 401–411 . 54991057 . free .
  13. Kakutani, S. . Ein Beweis des Satzes von Eidelheit über konvexe Mengen . Proceedings of the Japan Academy, Series A, Mathematical Sciences . de . A proof of Eidelheit's theorem on convex sets . Proceedings of the Imperial Academy of Japan . 13 . 1937 . 4 . 93–94 . 10.3792/pia/1195579980 . free .