\langlex,y,z\rangle
The axioms are
\langlex,y,y\rangle=y
\langlex,y,z\rangle=\langlez,x,y\rangle
\langlex,y,z\rangle=\langlex,z,y\rangle
\langle\langlex,w,y\rangle,w,z\rangle=\langlex,w,\langley,w,z\rangle\rangle
The second and third axioms imply commutativity: it is possible (but not easy) to show that in the presence of the other three, axiom (3) is redundant. The fourth axiom implies associativity.There are other possible axiom systems: for example the two
\langlex,y,y\rangle=y
\langleu,v,\langleu,w,x\rangle\rangle=\langleu,x,\langlew,u,v\rangle\rangle
In a Boolean algebra, or more generally a distributive lattice, the median function
\langlex,y,z\rangle=(x\veey)\wedge(y\veez)\wedge(z\veex)
Birkhoff and Kiss showed that a median algebra with elements 0 and 1 satisfying
\langle0,x,1\rangle=x
A median graph is an undirected graph in which for every three vertices
x
y
z
\langlex,y,z\rangle
x
y
z
\langlex,y,z\rangle
Conversely, in any median algebra, one may define an interval
[x,z]
y
\langlex,y,z\rangle=y
(x,z)
[x,z]
. Donald Knuth . Introduction to combinatorial algorithms and Boolean functions . . 4 . 2008 . 978-0-321-53496-5 . 64–74 . Addison-Wesley . Upper Saddle River, NJ .