Measuring receiver explained

In telecommunication, a measuring receiver or measurement receiver is a calibrated laboratory-grade radio receiver designed to measure the characteristics of radio signals. The parameters of such receivers (tuning frequency, receiving bandwidth, gain) can be adjusted over a much more comprehensive range of values than other radio receivers. Their circuitry is optimized for stability and enables calibration and reproducible results. Some measurement receivers also have exceptionally robust input circuits that can survive brief impulses of more than 1000 V, as they can occur during measurements of radio signals on power lines and other conductors.

Applications

Measuring receivers are used with calibrated antennas to:

Measuring receivers are also used without antennas to calibrate RF attenuators and signal generators.

Measuring receivers are widely used in Metrology and calibration lab environments, spectrum monitoring and electromagnetic compatibility facilities.

Types

Depending on the intended application area, several types of measuring receivers can be distinguished:

Some measuring receivers (such as Agilent’s N5531S and MXE or Rohde & Schwarz's FSMR and ESU) also include a signal analyzer, power meter, and a sensor module to allow the instruments to be used together or individually for general-purpose measurement tasks.

The time-domain EMI measurement systems show additional features like weighted Spectrogram mode, oscilloscope mode as well and measurement of discontinuous disturbance according to CISPR 14-1.

Requirements for Compliance Testing

Receivers used for compliance testing must fulfill the basic EMC standard CISPR 16-1-1. CISPR 16-1-1 defines requirements for the indication of CW Signals and pulses. The amplitude range where these requirements are met is called the CISPR indication range. Within this range, the receiver can be used for compliance tests. Usually, EMI receivers have a CISPR indication range that starts about 6dB above the noise floor. A linearity usually demonstrates the performance check for sinusoidal signals and broadband pulses. This linearity check is performed over the amplitude range starting from typical levels of 10dBuV. Even if called fully compliant, some EMI receivers have a CISPR indication range that starts at higher levels, e.g., 40dBuV. Typically, only one level, e.g., 60dBuV, is presented for such receivers. A demonstration of CISPR compliance at lower levels cannot be demonstrated.

See also

External links