Maxwell stress tensor explained

The Maxwell stress tensor (named after James Clerk Maxwell) is a symmetric second-order tensor in three dimensions that is used in classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum. In simple situations, such as a point charge moving freely in a homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force law. When the situation becomes more complicated, this ordinary procedure can become impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer to the problem at hand.

In the relativistic formulation of electromagnetism, the nine components of the Maxwell stress tensor appear, negated, as components of the electromagnetic stress–energy tensor, which is the electromagnetic component of the total stress–energy tensor. The latter describes the density and flux of energy and momentum in spacetime.

Motivation

As outlined below, the electromagnetic force is written in terms of

E

and

B

. Using vector calculus and Maxwell's equations, symmetry is sought for in the terms containing

E

and

B

, and introducing the Maxwell stress tensor simplifies the result.
Maxwell's equations in SI units in vacuum
(for reference)
Name ! Differential form
Gauss's law (in vacuum)

\boldsymbol{\nabla}E=

\rho
\varepsilon0
Gauss's law for magnetism

\boldsymbol{\nabla}B=0

Maxwell–Faraday equation
(Faraday's law of induction)

\boldsymbol{\nabla} x E=-

\partialB
\partialt
Ampère's circuital law (in vacuum)
(with Maxwell's correction)

\boldsymbol{\nabla} x B=\mu0J+\mu0\varepsilon0

\partialE
\partialt

in the above relation for conservation of momentum,

\boldsymbol{\nabla}\boldsymbol{\sigma}

is the momentum flux density and plays a role similar to

S

in Poynting's theorem.

The above derivation assumes complete knowledge of both

\rho

and

J

(both free and bounded charges and currents). For the case of nonlinear materials (such as magnetic iron with a BH-curve), the nonlinear Maxwell stress tensor must be used.[1]

Equation

In physics, the Maxwell stress tensor is the stress tensor of an electromagnetic field. As derived above, it is given by:

\sigmaij= \epsilon0EiEj+

1
\mu0

BiBj-

1
2

\left(\epsilon0E2+

1
\mu0
2\right)\delta
B
ij

,where

\epsilon0

is the electric constant and

\mu0

is the magnetic constant,

E

is the electric field,

B

is the magnetic field and

\deltaij

is Kronecker's delta. With Gaussian quantities, it is given by:

\sigmaij=

1
4\pi

\left(EiEj+HiHj-

1
2

\left(E2+

2\right)\delta
H
ij

\right)

,where

H

is the magnetizing field.

An alternative way of expressing this tensor is:

\overset{\leftrightarrow}{\boldsymbol{\sigma}}=

1
4\pi

\left[EE+HH-

E2+H2
2

I\right]

where

is the dyadic product, and the last tensor is the unit dyad:

I\equiv\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{pmatrix}= \left(\hatx\hatx+\haty\haty+\hatz\hatz\right)

The element

ij

of the Maxwell stress tensor has units of momentum per unit of area per unit time and gives the flux of momentum parallel to the

i

th axis crossing a surface normal to the

j

th axis (in the negative direction) per unit of time.

These units can also be seen as units of force per unit of area (negative pressure), and the

ij

element of the tensor can also be interpreted as the force parallel to the

i

th axis suffered by a surface normal to the

j

th axis per unit of area. Indeed, the diagonal elements give the tension (pulling) acting on a differential area element normal to the corresponding axis. Unlike forces due to the pressure of an ideal gas, an area element in the electromagnetic field also feels a force in a direction that is not normal to the element. This shear is given by the off-diagonal elements of the stress tensor.

In magnetostatics

If the field is only magnetic (which is largely true in motors, for instance), some of the terms drop out, and the equation in SI units becomes:

\sigmaij=

1
\mu0

BiBj-

1
2\mu0

B2\deltaij.

For cylindrical objects, such as the rotor of a motor, this is further simplified to:

\sigmart=

1
\mu0

BrBt-

1
2\mu0

B2\deltart.

where

r

is the shear in the radial (outward from the cylinder) direction, and

t

is the shear in the tangential (around the cylinder) direction. It is the tangential force which spins the motor.

Br

is the flux density in the radial direction, and

Bt

is the flux density in the tangential direction.

In electrostatics

In electrostatics the effects of magnetism are not present. In this case the magnetic field vanishes, i.e.

B=0

, and we obtain the electrostatic Maxwell stress tensor. It is given in component form by

\sigmaij=\varepsilon0EiEj-

1
2

\varepsilon0

2\delta
E
ij

and in symbolic form by

\boldsymbol{\sigma}=\varepsilon0EE-

1
2

\varepsilon0(EE)I

where

I

is the appropriate identity tensor

(

usually

3 x 3)

.

Eigenvalue

The eigenvalues of the Maxwell stress tensor are given by:

\{λ\}=\left\{-\left(

\epsilon0
2

E2+

1
2\mu0

B2\right),~\pm\sqrt{\left(

\epsilon0
2

E2-

1
2\mu0

B2\right)2+

\epsilon0
\mu0

\left(\boldsymbol{E}\boldsymbol{B}\right)2}\right\}

These eigenvalues are obtained by iteratively applying the matrix determinant lemma, in conjunction with the Sherman–Morrison formula.

Noting that the characteristic equation matrix,

\overleftrightarrow{\boldsymbol{\sigma}}-λI

, can be written as

\overleftrightarrow{\boldsymbol{\sigma}}-λI=-\left(λ+V\right)I+

sf{T}+
\epsilon
0EE
1
\mu0

BBsf{T}

where

V=

1
2

\left(\epsilon0E2+

1
\mu0

B2\right)

we set

U=-\left(λ+V\right)I+

sf{T}
\epsilon
0EE

Applying the matrix determinant lemma once, this gives us

\det{\left(\overleftrightarrow{\boldsymbol{\sigma}}-λI\right)}=\left(1+

1
\mu0

Bsf{T}U-1B\right)\det{\left(U\right)}

Applying it again yields,

\det{\left(\overleftrightarrow{\boldsymbol{\sigma}}-λI\right)}=\left(1+

1
\mu0

Bsf{T}U-1B\right)\left(1-

sf{T
\epsilon
0E
E
}\right) \left(-\lambda - V\right)^3

From the last multiplicand on the RHS, we immediately see that

λ=-V

is one of the eigenvalues.

To find the inverse of

U

, we use the Sherman-Morrison formula:

U-1=-\left(λ+V\right)-1-

\epsilon0EEsf{T
}

Factoring out a

\left(-V\right)

term in the determinant, we are left with finding the zeros of the rational function:

\left(-\left(λ+V\right)-

\epsilon0\left(EB\right)2
\mu+V\right)+
sf{T
\epsilon
0E
0\left(-\left(λ

E\right)}\right)\left(-\left(λ+V\right)+

sf{T}E\right)
\epsilon
0E

Thus, once we solve

-\left(λ+V\right)\left(-\left(λ+V\right)+\epsilon0E2\right)-

\epsilon0
\mu0

\left(EB\right)2=0

we obtain the other two eigenvalues.

See also

References

Notes and References

  1. Book: Brauer, John R.. Magnetic Actuators and Sensors. 2014-01-13. John Wiley & Sons. 9781118754979. en.