Largest empty rectangle explained
In computational geometry, the largest empty rectangle problem,[1] maximal empty rectangle problem[2] or maximum empty rectangle problem,[3] is the problem of finding a rectangle of maximal size to be placed among obstacles in the plane. There are a number of variants of the problem, depending on the particularities of this generic formulation, in particular, depending on the measure of the "size", domain (type of obstacles), and the orientation of the rectangle.
The problems of this kind arise e.g., in electronic design automation, in design and verification of physical layout of integrated circuits.[4]
A maximal empty rectangle is a rectangle which is not contained in another empty rectangle. Each side of a maximal empty rectangle abuts an obstacle (otherwise the side may be shifted outwards, increasing the empty rectangle). An application of this kind is enumeration of "maximal white rectangles" in image segmentation R&D of image processing and pattern recognition.[5] In the contexts of many algorithms for largest empty rectangles, "maximal empty rectangles" are candidate solutions to be considered by the algorithm, since it is easily proven that, e.g., a maximum-area empty rectangle is a maximal empty rectangle.
Classification
In terms of size measure, the two most common cases are the largest-area empty rectangle and largest-perimeter empty rectangle.[6]
Another major classification is whether the rectangle is sought among axis-oriented or arbitrarily oriented rectangles.
Special cases
Maximum-area square
The case when the sought rectangle is an axis-oriented square may be treated using Voronoi diagrams in
metrics for the corresponding obstacle set, similarly to the
largest empty circle problem. In particular, for the case of points within rectangle an optimal algorithm of
time complexity
is known.
[7] Domain: rectangle containing points
, where
s is the number of feasible solutions, i.e., maximal empty rectangles. They also proved that
and gave an example in which
s is quadratic in
n. Afterwards a number of papers presented better algorithms for the problem.
Domain: line segment obstacles
The problem of empty isothetic rectangles among isothetic line segments was first considered[9] in 1990.[10] Later a more general problem of empty isothetic rectangles among non-isothetic obstacles was considered.[9]
Generalizations
Higher dimensions
In 3-dimensional space, algorithms are known for finding a largest maximal empty isothetic cuboid problem, as well as for enumeration of all maximal isothetic empty cuboids.[11]
See also
Notes and References
- Web site: Search Google Scholar for "largest empty rectangle" term usage.
- Web site: Search Google Scholar for "maximal empty rectangle" term usage.
- Web site: Search Google Scholar for "maximum empty rectangle" term usage.
- Book: Jeffrey Ullman. Computational Aspects of VLSI. Computer Science Press. 1984. 0-914894-95-1. Ch.9: Algorithms for VLSI Design Tools. describes algorithms for polygon operations involved in electronic design automation (design rule checking, circuit extraction, placement and routing).
- Book: Baird, H. S., Jones, S. E., Fortune, S.J.. [1990] Proceedings. 10th International Conference on Pattern Recognition . Image segmentation by shape-directed covers . 1990. 1. 820–825. 10.1109/ICPR.1990.118223. 0-8186-2062-5 . 62735730 .
- Book: Alok Aggearwal, Subhash Suri. Proceedings of the third annual symposium on Computational geometry - SCG '87 . Fast algorithms for computing the largest empty rectangle . 1987. 278–290. 10.1145/41958.41988. 0897912314 . 18500442 .
- B. Chazelle, R. L. Drysdale III and D. T. Lee. Computing the largest empty rectangle. STACS-1984, Lecture Notes in Computer Science. Lecture Notes in Computer Science . 166. 1984. 43–54. 10.1007/3-540-12920-0_4. 978-3-540-12920-2 .
- A. Naamad, D. T. Lee and W.-L. Hsu. On the Maximum Empty Rectangle Problem. Discrete Applied Mathematics. 1984. 8 . 3 . 267–277. 10.1016/0166-218X(84)90124-0. free.
- Book: Foundations of Software Technology and Theoretical Computer Science. Location of Largest Empty Rectangle among Arbitrary Obstacles. https://books.google.com/books?id=JWOA9M9CcX8C&dq=%22maximal+empty+rectangle%22&pg=PA159. 159. 9783540587156 . Thiagarajan . P. S. . 23 November 1994 . Springer .
- Subhas C Nandy . Bhargab B Bhattacharya . Sibabrata Ray . Efficient algorithms for identifying all maximal isothetic empty rectangles in VLSI layout design. Proc. FST & TCS – 10, Lecture Notes in Computer Science. Lecture Notes in Computer Science . 437. 1990. 255–269. 10.1007/3-540-53487-3_50. 978-3-540-53487-7 .
- S.C. Nandy . B.B. Bhattacharya . Maximal Empty Cuboids among Points and Blocks. Computers & Mathematics with Applications. 36. 3. 1998. 11–20. 10.1016/S0898-1221(98)00125-4 . free.