Matthew Linford Explained

Matthew Linford
Birth Date:9 April 1966
Occupation:Associate Professor at Brigham Young University

Matthew R. Linford (born April 9, 1966)[1] is an associate professor at Brigham Young University, Department of Chemistry and Biochemistry (Provo, Utah) since September 2006. His lab is devoted to synthesizing hydrophobic surfaces, diamond stationary phases for liquid chromatography and microfabricated TLC plates.

Linford works in surface modification and characterization, particularly in studying organic thin films (monolayer and polymer), modifying silicon, diamond, silicon oxide, gold, and polymers, surface patterning, and organic chemistry. He also works with thin-film deposition using silanes, alkenes, thiols, and treats by sputtering.[2] In his group, they also undertake liquid chromatography (HPLC and TLC) and solid phase extraction (SPE), develop hydrophobic coatings for various materials. They study materials for optical data storage, and perform surface analysis by XPS, ToF-SIMS, wetting, optical ellipsometry, and FTIR. His lab also performs chemometrics of mass spectroscopic data (PCA, MCR, cluster analysis, and PRE).[3]

Academic history

Linford received his Bachelor of Science in Chemistry from Brigham Young University in September 1990, followed by a Master of Science in Materials Science and Engineering and a PhD in Chemistry from Stanford University later in June 1996. He served as a post-doctoral fellow at the Max Planck Institute for Colloid and Surface Sciences from July 1996 to June 1997.[4]

Linford has worked on topics including supercritical fluid chromatography and the formation of the first alkyl monolayers on silicon using diacyl peroxides. He has studied the use of synchrotron radiation to characterize monolayers on silicon, worked on the gas-phase free-radical modification of alkyl monolayers, devised a new method for coating particles, and studied the strong effect of ionic strength on surface dye extraction during dye-polymer multilayer formation. He has worked on growing semiconducting particles in polyelectrolyte multilayers, designed a cell to study the flow-induced orientation of polyelectrolytes on surfaces, described a mixing process using matrix algebra, also he synthesized and characterized films of new polyelectrolytes.

Service in industrial sector

Linford served for a few years in the industrial sector. While working as a senior scientist at Rohm and Haas Company, he developed an IR tool for the rapid screening of catalysts, and he designed and built a laser scanner for detecting defects on plastic sheets which can be used as a substrate for flat panel liquid crystal displays. He has worked as a senior scientist/consultant for Praelux, Inc. and developed methods to immobilize single nucleotides and DNA oligomers onto surfaces. He developed procedures to attach a nickel (NTA) chelator to glass coverslips to bind proteins with 6-his tags, developed novel methods to immobilize amines onto surfaces, performed surface patterning using microcontact printing, and worked on bioconjugation of a protein to glass microspheres.

Linford has served as a director of research for Nano-Tex, LLC. and developed the product "Nano-Dry" to make nylon and polyester hydrophilic. This product increases the comfort of fabrics, and it is currently being marketed throughout the United States. (Tiger Woods is shown in the October 2003 issue of Golf Digest is wearing a pair of pants that have this finish on them – Nano-Dry had become part of the Nike golf collection. He has been an inventor on 10 patents from work with Nano-Tex. He designed and synthesized numerous polymers (mostly free radical polymerizations of acrylates and methacrylates). He also formulated polymers, surfactants, wetting agents and defoaming agents.

Companies

Linford has been a founder of several companies.

Service in academia

Linford served as an assistant professor and then as associate professor at Brigham Young University. During this tenure he has published 23 peer-reviewed papers, 2 conference proceedings, 1 book chapter, 7 peer-reviewed contributions to spectral data bases, and 11 patents. His work was highlighted on the cover of Synthetic Metals, in the Journal of the American Chemical Society, in Accounts of Chemical Research, in Chemical and Engineering News, in LCGC and in Langmuir. His work on polymer growth on silicon appeared on the cover of Macromolecular Rapid Communications in 2008.

Linford received the BYU Technology Transfer Award on August 25, 2009 at the annual BYU university conference. He was invited and was the first speaker at the Nagasaki Syposium on Nano-Dynamics 2009, Nagasaki University in Japan. He was named to the editorial board of the journal Nanoscience and Nanotechnology Letters (NNL) in 2008. He was a Co-PI on a $1,000,000 grant from NSF in 2007.

Honors and awards

Linford was named a Fellow of the American Vacuum Society in 2014.[6] Linford is also an accomplished and high ranking tennis player for the state of Utah, and frequently takes time out of his research to travel and participate in national tennis tournaments. His 2018 Estimated Dynamic is 3.5559, his current NTRP 3.5 S, and estimated rating of 4.0 as of 2018.

External links

Notes and References

  1. U.S. Public Records Index Vol 2 (Provo, Utah: Ancestry.com Operations, Inc.), 2010.
  2. Web site: Matthew Linford . 2024-04-17 . The College of Physical and Mathematical Sciences (CPMS) . en.
  3. Web site: Linford Research Group . 2024-04-17 . Chemistry and Biochemistry Labs . en.
  4. Web site: Matthew Linford . 2024-04-17 . The College of Physical and Mathematical Sciences (CPMS) . en.
  5. Web site: Home . millenniata.com.
  6. https://avs.org/Awards-Recognition/Society-Honors/Fellow-of-the-Society Fellow of the Society