In statistics, the matrix variate Dirichlet distribution is a generalization of the matrix variate beta distribution and of the Dirichlet distribution.
Suppose
U1,\ldots,Ur
p x p
Ip-\sum
rU | |
i |
Ip
p x p
Ui
\left(U1,\ldots,Ur\right)\simDp\left(a1,\ldots,ar;ar+1\right)
\left\{\betap\left(a1,\ldots,ar,ar+1\right)\right\}-1
r | |
\prod | |
i=1 |
ai-(p+1)/2 | |
\det\left(U | |
i\right) |
\det\left(Ip-\sum
ar+1-(p+1)/2 | |
i\right) |
where
ai>(p-1)/2,i=1,\ldots,r+1
\betap\left( … \right)
If we write
Ur+1=Ip-\sum
r | |
i=1 |
Ui
\left\{\betap\left(a1,\ldots,ar+1\right)\right\}-1
r+1 | |
\prod | |
i=1 |
ai-(p+1)/2 | |
\det\left(U | |
i\right) |
,
on the understanding that
r+1 | |
\sum | |
i=1 |
Ui=Ip
Suppose
Si\simWp\left(ni,\Sigma\right),i=1,\ldots,r+1
p x p
-1/2 | |
U | |
i=S |
-1/2 | |
S | |
i\left(S |
\right)T
S1/2\left(S-1/2\right)T
S
\left(U1,\ldots,Ur\right)\simDp\left(n1/2,...,nr+1/2\right).
If
\left(U1,\ldots,Ur\right)\simDp\left(a1,\ldots,ar+1\right)
s\leqr
\left(U1,\ldots,Us\right)\simDp\left(a1,\ldots,as,\sum
r+1 | |
i=s+1 |
ai\right)
Also, with the same notation as above, the density of
\left(Us+1,\ldots,Ur\right)\left|\left(U1,\ldots,Us\right)\right.
| |||||||||||||||||||||||||||
|
Ur+1=Ip-\sum
rU | |
i |
Suppose
\left(U1,\ldots,Ur\right)\simDp\left(a1,\ldots,ar+1\right)
S1,\ldots,St
\left[r+1\right]=\left\{1,\ldotsr+1\right\}
tS | |
\cup | |
i=\left[r+1\right] |
Si\capSj=\emptyset
i ≠ j
U(j)
=\sum | |
i\inSj |
Ui
a(j)
=\sum | |
i\inSj |
ai
Ur+1=Ip-\sum
r | |
i=1 |
Ur
\left(U(1),\ldotsU(t)\right)\simDp\left(a(1),\ldots,a(t)\right).
Suppose
\left(U1,\ldots,Ur\right)\simDp\left(a1,\ldots,ar+1\right)
Ui=\left(\begin{array}{rr} U11(i)&U12(i)\\ U21(i)&U22(i)\end{array}\right) i=1,\ldots,r
where
U11(i)
p1 x p1
U22(i)
p2 x p2
U22 ⋅ =U21(i)
-1 | |
U | |
11(i) |
U12(i)
\left(U11(1),\ldots,U11(r)\right)\sim
D | |
p1 |
\left(a1,\ldots,ar+1\right)
\left(U22.1(1),\ldots,U22.1(r)\right)\sim
D | |
p2 |
\left(a1-p1/2,\ldots,ar-p1/2,ar+1-p1/2+p1r/2\right).
A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall.