Mathisson–Papapetrou–Dixon equations explained
In physics, specifically general relativity, the Mathisson–Papapetrou–Dixon equations describe the motion of a massive spinning body moving in a gravitational field. Other equations with similar names and mathematical forms are the Mathisson–Papapetrou equations and Papapetrou–Dixon equations. All three sets of equations describe the same physics.
They are named for M. Mathisson,[1] W. G. Dixon,[2] and A. Papapetrou.[3]
Throughout, this article uses the natural units c = G = 1, and tensor index notation.
Mathisson–Papapetrou–Dixon equations
The Mathisson–Papapetrou–Dixon (MPD) equations for a mass
spinning body are
\begin{align}
+
λ\muRλV\rho&=0,\\
+Vλk\mu-V\mukλ&=0.
\end{align}
Here
is the proper time along the trajectory,
is the body's four-momentum
k\nu=\intt=const
\sqrt{g}d3x,
the vector
is the four-velocity of some reference point
in the body, and the skew-symmetric tensor
is the angular momentum
S\mu\nu=\intt=const\left\{\left(x\mu-X\mu\right)T0\nu-\left(x\nu-X\nu\right)T0\mu\right\}\sqrt{g}d3x
of the body about this point. In the time-slice integrals we are assuming that the body is compact enough that we can use flat coordinates within the body where the energy-momentum tensor
is non-zero.
As they stand, there are only ten equations to determine thirteen quantities. These quantities are the six components of
, the four components of
and the three independent components of
. The equations must therefore be supplemented by three additional constraints which serve to determine which point in the body has velocity
. Mathison and Pirani originally chose to impose the condition
which, although involving four components, contains only three constraints because
is identically zero. This condition, however, does not lead to a unique solution and can give rise to the mysterious "helical motions".
[4] The Tulczyjew–Dixon condition
does lead to a unique solution as it selects the reference point
to be the body's center of mass in the frame in which its momentum is
.
Accepting the Tulczyjew–Dixon condition
, we can manipulate the second of the MPD equations into the form
+
λ\rhok\mu
+S\rhokλ
\right)=0,
This is a form of Fermi–Walker transport of the spin tensor along the trajectory – but one preserving orthogonality to the momentum vector
rather than to the tangent vector
. Dixon calls this
M-transport.
See also
References
Selected papers
- C. Chicone . B. Mashhoon . B. Punsly . Physics Letters A. 2005. 343. 1–3. 1–7. Relativistic motion of spinning particles in a gravitational field. 10.1016/j.physleta.2005.05.072. gr-qc/0504146. 2005PhLA..343....1C. 10355/8357 . 56132009 .
- N. Messios. International Journal of Theoretical Physics. 2007. 46. 3. 562–575. Spinning Particles in Spacetimes with Torsion. General Relativity and Gravitation. Springer. 2007IJTP...46..562M. 10.1007/s10773-006-9146-8. 119514028 .
- D. Singh. International Journal of Theoretical Physics. 2008. 40. 6. 1179–1192. An analytic perturbation approach for classical spinning particle dynamics. General Relativity and Gravitation. Springer. 10.1007/s10714-007-0597-x. 0706.0928. 2008GReGr..40.1179S . 7255389 .
- Mathisson's helical motions demystified. AIP Conf. Proc.. 1458 . 367–370 . L. F. O. Costa . J. Natário . M. Zilhão . 2012. 1206.7093. 10.1063/1.4734436. AIP Conference Proceedings . 2012AIPC.1458..367C. 119306409.
- R. M. Plyatsko. Soviet Physics Journal. 1985. 28. 7. 601–604. Addition of the Pirani condition to the Mathisson-Papapetrou equations in a Schwarzschild field. Springer. 1985SvPhJ..28..601P. 10.1007/BF00896195. 121704297 .
- Deriving Mathisson-Papapetrou equations from relativistic pseudomechanics. R.R. Lompay. 2005. gr-qc/0503054.
- Can Mathisson-Papapetrou equations give clue to some problems in astrophysics?. R. Plyatsko. 2011. 1110.2386. gr-qc.
- Mathisson-Papapetrou equations in metric and gauge theories of gravity in a Lagrangian formulation. M. Leclerc. 2005. 10.1088/0264-9381/22/16/006. gr-qc/0505021. 22. 16. Classical and Quantum Gravity. 3203–3221. 2005CQGra..22.3203L. 2569951.
- Mathisson-Papapetrou-Dixon equations in the Schwarzschild and Kerr backgrounds . R. Plyatsko . O. Stefanyshyn . M. Fenyk . 2011 . 1110.1967 . 10.1088/0264-9381/28/19/195025 . 28 . 19 . Classical and Quantum Gravity . 195025. 2011CQGra..28s5025P . 119213540 .
- On common solutions of Mathisson equations under different conditions . R. Plyatsko . O. Stefanyshyn . 2008 . 0803.0121 . 2008arXiv0803.0121P .
- R. M. Plyatsko . A. L. Vynar . Ya. N. Pelekh . Soviet Physics Journal. 1985. 28. 10. 773–776. Conditions for the appearance of gravitational ultrarelativistic spin-orbital interaction. Springer. 1985SvPhJ..28..773P. 10.1007/BF00897946. 119799125 .
- K. Svirskas . K. Pyragas . Astrophysics and Space Science. 1991. 179. 2. 275–283. The spherically-symmetrical trajectories of spin particles in the Schwarzschild field. Springer. 1991Ap&SS.179..275S. 10.1007/BF00646947. 120108333 .
Notes and References
- News: M. Mathisson. Neue Mechanik materieller Systeme . Acta Physica Polonica . 6 . 1937 . 163–209 .
- Dynamics of Extended Bodies in General Relativity. I. Momentum and Angular Momentum . W. G. Dixon . 1970 . 10.1098/rspa.1970.0020 . Proc. R. Soc. Lond. A . 314 . 1519 . 1970RSPSA.314..499D . 499–527. 119632715 .
- A. Papapetrou . Spinning Test-Particles in General Relativity. I . 1951 . 10.1098/rspa.1951.0200 . Proc. R. Soc. Lond. A . 209 . 1097 . 1951RSPSA.209..248P . 248–258. 121464697 .
- Mathisson's helical motions demystified. AIP Conf. Proc.. 1458 . 367–370 . L. F. O. Costa . J. Natário . M. Zilhão . 2012. 1206.7093. 10.1063/1.4734436. AIP Conference Proceedings . 2012AIPC.1458..367C. 119306409.