Matérn covariance function explained
In statistics, the Matérn covariance, also called the Matérn kernel,[1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn.[2] It specifies the covariance between two measurements as a function of the distance
between the points at which they are taken. Since the covariance only depends on distances between points, it is
stationary. If the distance is
Euclidean distance, the Matérn covariance is also
isotropic.
Definition
The Matérn covariance between measurements taken at two points separated by d distance units is given by [3]
where
is the
gamma function,
is the modified
Bessel function of the second kind, and
ρ and
are positive
parameters of the covariance.
A Gaussian process with Matérn covariance is
times differentiable in the mean-square sense.
[3] [4] Spectral density
The power spectrum of a process with Matérn covariance defined on
is the (
n-dimensional) Fourier transform of the Matérn covariance function (see
Wiener–Khinchin theorem). Explicitly, this is given by
Simplification for specific values of ν
Simplification for ν half integer
When
, the
Matérn covariance can be written as a product of an exponential and a polynomial of degree
.
[5] [6] The modified Bessel function of a fractional order is given by Equations 10.1.9 and 10.2.15
[7] as
.
This allows for the Matérn covariance of half-integer values of
to be expressed as
which gives:
:
:
C3/2(d)=
| 2\left(1+ | \sqrt{3 | d}{\rho}\right)\exp\left(- | \sqrt{3 | d}{\rho}\right), |
|
|
\sigma | |
:
The Gaussian case in the limit of infinite ν
As
, the
Matérn covariance converges to the squared exponential
covariance function\lim\nu → inftyC\nu(d)=
\right).
Taylor series at zero and spectral moments
The behavior for
can be obtained by the following
Taylor series (reference is needed, the formula below leads to division by zero in case
):
When defined, the following spectral moments can be derived from the Taylor series:
\begin{align}
λ0&=C\nu(0)=\sigma2,\\[8pt]
λ2&=-\left.
\right|d=0=
.
\end{align}
See also
References
- Genton . Marc G. . Classes of kernels for machine learning: a statistics perspective . The Journal of Machine Learning Research . 1 March 2002 . 2 . 3/1/2002 . 303–304 . EN.
- B. . McBratney. A. B. . The Matérn function as a general model for soil variograms. Minasny. Geoderma . 128. 3–4 . 192–207 . 2005 . 10.1016/j.geoderma.2005.04.003.
- Rasmussen, Carl Edward and Williams, Christopher K. I. (2006) Gaussian Processes for Machine Learning
- Santner, T. J., Williams, B. J., & Notz, W. I. (2013). The design and analysis of computer experiments. Springer Science & Business Media.
- Stein, M. L. (1999). Interpolation of spatial data: some theory for kriging. Springer Series in Statistics.
- Peter Guttorp & Tilmann Gneiting, 2006. "Studies in the history of probability and statistics XLIX On the Matern correlation family," Biometrika, Biometrika Trust, vol. 93(4), pages 989-995, December.
- Book: Abramowitz and Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 1965 . 0-486-61272-4. registration.