The Mason–Weaver equation (named after Max Mason and Warren Weaver) describes the sedimentation and diffusion of solutes under a uniform force, usually a gravitational field.[1] Assuming that the gravitational field is aligned in the z direction (Fig. 1), the Mason–Weaver equation may be written
\partialc | |
\partialt |
=D
\partial2c | |
\partialz2 |
+sg
\partialc | |
\partialz |
where t is the time, c is the solute concentration (moles per unit length in the z-direction), and the parameters D, s, and g represent the solute diffusion constant, sedimentation coefficient and the (presumed constant) acceleration of gravity, respectively.
D
\partialc | |
\partialz |
+sgc=0
za
zb
Ntot=
za | |
\int | |
zb |
dz c(z,t)
dNtot/dt=0
fv
mg
\rhoVg
\rho
vterm
\bar{\nu}
fvterm=m(1-\bar{\nu}\rho)g \stackrel{def
where
mb
s \stackrel{def
D=
kBT | |
f |
the ratio of s and D equals
s | |
D |
=
mb | |
kBT |
where
kB
The flux J at any point is given by
J=-D
\partialc | |
\partialz |
-vtermc=-D
\partialc | |
\partialz |
-sgc.
The first term describes the flux due to diffusion down a concentration gradient, whereas the second term describes the convective flux due to the average velocity
vterm
\partialc | |
\partialt |
=-
\partialJ | |
\partialz |
.
Substituting the equation for the flux J produces the Mason–Weaver equation
\partialc | |
\partialt |
=D
\partial2c | |
\partialz2 |
+sg
\partialc | |
\partialz |
.
The parameters D, s and g determine a length scale
z0
z0 \stackrel{def
and a time scale
t0
t0 \stackrel{def
Defining the dimensionless variables
\zeta \stackrel{def
\tau \stackrel{def
\partialc | = | |
\partial\tau |
\partial2c | |
\partial\zeta2 |
+
\partialc | |
\partial\zeta |
subject to the boundary conditions
\partialc | |
\partial\zeta |
+c=0
\zetaa
\zetab
This partial differential equation may be solved by separation of variables. Defining
c(\zeta,\tau) \stackrel{def
\beta
dT | |
d\tau |
+\betaT=0
d2P | |
d\zeta2 |
+\left[\beta-
1 | |
4 |
\right]P=0
where acceptable values of
\beta
dP | |
d\zeta |
+
1 | |
2 |
P=0
at the upper and lower boundaries,
\zetaa
\zetab
T(\tau)=T0e-\beta
T0
P(\zeta)
The ordinary differential equation for P and its boundary conditions satisfy the criteriafor a Sturm–Liouville problem, from which several conclusions follow. First, there is a discrete set of orthonormal eigenfunctions
Pk(\zeta)
\betak
\beta0
k2
c(\zeta,\tau)
c(\zeta,\tau)=
infty | |
\sum | |
k=0 |
ckPk(\zeta)
-\betak\tau | |
e |
where
ck
c(\zeta,\tau=0)
ck=
\zetab | |
\int | |
\zetaa |
d\zeta c(\zeta,\tau=0)e\zeta/2Pk(\zeta)
At equilibrium,
\beta=0
e-\zeta/2P0(\zeta)=Be-\zeta=B
-mbgz/kBT | |
e |
which agrees with the Boltzmann distribution. The
P0(\zeta)
\zeta
B=Ntot\left(
sg | |
D |
\right) \left(
1 | ||||||||||
|
\right)
To find the non-equilibrium values of the eigenvalues
\betak
P(\zeta)=
i\omegak\zeta | |
e |
\omegak=\pm\sqrt{\betak-
1 | |
4} |
Depending on the value of
\betak
\omegak
\beta | ||||
|
\betak<
1 | |
4 |
P(\zeta)=A\cos{\omegak\zeta}+B\sin{\omegak\zeta}
where A and B are constants and
\omega
\rho
\varphi
u \stackrel{def
v \stackrel{def
\rho \stackrel{def
\tan(\varphi) \stackrel{def
the second-order equation for P is factored into two simple first-order equations
d\rho | |
d\zeta |
=0
d\varphi | |
d\zeta |
=\omega
Remarkably, the transformed boundary conditions are independent of
\rho
\zetaa
\zetab
\tan(\varphia)=\tan(\varphib)=
1 | |
2\omegak |
Therefore, we obtain an equation
\varphia-\varphib+k\pi=k\pi=
\zetaa | |
\int | |
\zetab |
d\zeta
d\varphi | |
d\zeta |
=\omegak(\zetaa-\zetab)
giving an exact solution for the frequencies
\omegak
\omegak=
k\pi | |
\zetaa-\zetab |
The eigenfrequencies
\omegak
\zetaa>\zetab
\omega1 \stackrel{def
\betak
\omegak
\betak=
2 | |
\omega | |
k |
+
1 | |
4 |
Taken together, the non-equilibrium components of the solution correspond to a Fourier series decomposition of the initial concentration distribution
c(\zeta,\tau=0)
e\zeta/2
-\betak\tau | |
e |
\betak
\omegak