In Mathematics, the Mashreghi–Ransford inequality is a bound on the growth rate of certain sequences. It is named after J. Mashreghi and T. Ransford.
Let
(an)n
bn=
n | |
\sum | |
k=0 |
{n\choosek}ak, (n\geq0),
and
cn=
n | |
\sum | |
k=0 |
(-1)k{n\choosek}ak, (n\geq0).
Here the binomial coefficients are defined by
{n\choosek}=
n! | |
k!(n-k)! |
.
Assume that, for some
\beta>1
bn=O(\betan)
cn=O(\betan)
n\toinfty
an=O(\alphan)
n\toinfty
where
\alpha=\sqrt{\beta2-1}.
\kappa
\left(\limsupn
|an| | |
\alphan |
\right)\leq\kappa\left(\limsupn
|bn| | |
\betan |
| ||||
\right) |
\left(\limsupn
|cn| | |
\betan |
| ||||
\right) |
.
The precise value of
\kappa
2 | |
\sqrt{3 |