In statistics, the generalized Marcum Q-function of order
\nu
Q\nu(a,b)=
1 | |
a\nu-1 |
infty | |
\int | |
b |
x\nu\exp\left(-
x2+a2 | |
2 |
\right)I\nu-1(ax)dx
where
b\geq0
a,\nu>0
I\nu-1
\nu-1
b>0
\nu
\nu=1
Using the fact that
Q\nu(a,0)=1
Q\nu(a,b)=1-
1 | |
a\nu-1 |
b | |
\int | |
0 |
x\nu\exp\left(-
x2+a2 | |
2 |
\right)I\nu-1(ax)dx.
However, it is preferable to have an integral representation of the Marcum Q-function such that (i) the limits of the integral are independent of the arguments of the function, (ii) and that the limits are finite, (iii) and that the integrand is a Gaussian function of these arguments. For positive integer values of
\nu=n
Qn(a,b)=\left\{\begin{array}{lr}Hn(a,b)&a<b,\\
1 | |
2 |
+Hn(a,a)&a=b,\\ 1+Hn(a,b)&a>b, \end{array}\right.
where
Hn(a,b)=
\zeta1-n | \exp\left(- | |
2\pi |
a2+b2 | |
2 |
\right)
2\pi | |
\int | |
0 |
\cos(n-1)\theta-\zeta\cosn\theta | |
1-2\zeta\cos\theta+\zeta2 |
\exp(ab\cos\theta)d\theta,
and the ratio
\zeta=a/b
For any real
\nu>0
Q\nu(a,b)=\left\{\begin{array}{lr}H\nu(a,b)+C\nu(a,b)&a<b,\\
1 | |
2 |
+H\nu(a,a)+C\nu(a,b)&a=b,\\ 1+H\nu(a,b)+C\nu(a,b)&a>b, \end{array}\right.
where
Hn(a,b)
\zeta=a/b
C\nu(a,b)=
\sin(\nu\pi) | \exp\left(- | |
\pi |
a2+b2 | |
2 |
\right)
1 | |
\int | |
0 |
(x/\zeta)\nu-1 | |
\zeta+x |
\exp\left[-
ab | \left(x+ | |
2 |
1 | |
x |
\right)\right]dx.
For integer values of
\nu
C\nu(a,b)
Q\nu(a,b)
\nu
a
a\geq0
b,\nu>0
b
a,b\geq0
\nu>0.
\nu\mapstoQ\nu(a,b)
[1,infty)
a,b\geq0.
b\mapstoQ\nu(a,b)
(0,infty)
a\geq0
\nu>1
a\mapsto1-Q\nu(a,b)
[0,infty)
b,\nu>0.
\nu>0
Q\nu(a,b)=1-
-a2/2 | |
e |
infty | |
\sum | |
k=0 |
1 | |
k! |
| |||||
\Gamma(\nu+k) |
\left(
a2 | |
2 |
\right)k,
where
\gamma(s,x)
\nu
\nu>0
Q\nu(a,b)=1-
-a2/2 | |
e |
infty | |
\sum | |
k=0 |
(-1)k
| \left( | |||||||||||||
\Gamma(\nu+k+1) |
b2 | |
2 |
\right)k+\nu,
where
(\alpha) | |
L | |
k |
( ⋅ )
k
\alpha
\nu>0
Q\nu(a,b)=
-(a2+b2)/2 | |
e |
infty | |
\sum | |
\alpha=1-\nu |
\left(
a | |
b |
\right)\alphaI-\alpha(ab),
1-Q\nu(a,b)=
-(a2+b2)/2 | |
e |
infty | |
\sum | |
\alpha=\nu |
\left(
b | |
a |
\right)\alphaI\alpha(ab),
where the summations are in increments of one. Note that when
\alpha
I\alpha(ab)=I-\alpha(ab)
\nu=n+1/2
Qn+1/2(a,b)=
1 | |
2 |
\left[erfc\left(
b-a | |
\sqrt{2 |
where
erfc( ⋅ )
I\pm(n+0.5)(z)=
1 | |
\sqrt{\pi |
where
n
Qn+1/2(a,b)=Q(b-a)+Q(b+a)+
1 | |
b\sqrt{2\pi |
for non-negative integers
n
Q( ⋅ )
I | ||||
|
(z)=\sqrt{
2z | |
\pi |
where
g0(z)=z-1
g1(z)=-z-2
gn-1(z)-gn+1(z)=(2n+1)z-1gn(z)
n
Q\nu+1(a,b)-Q\nu(a,b)=\left(
b | |
a |
\right)\nu
-(a2+b2)/2 | |
e |
I\nu(ab).
Q\nu-n(a,b)=Q\nu(a,b)-\left(
b | |
a |
\right)\nu
-(a2+b2)/2 | |
e |
n | ||
\sum | \left( | |
k=1 |
a | |
b |
\right)kI\nu-k(ab),
Q\nu+n(a,b)=Q\nu(a,b)+\left(
b | |
a |
\right)\nu
-(a2+b2)/2 | |
e |
n-1 | ||
\sum | \left( | |
k=0 |
b | |
a |
\right)kI\nu+k(ab),
for positive integer
n
\nu
Qinfty(a,b)=1
Q-infty(a,b)=0
n=infty
Q\nu+1(a,b)-(1+c\nu(a,b))Q\nu(a,b)+c\nu(a,b)Q\nu-1(a,b)=0,
where
c\nu(a,b)=\left(
b | |
a |
\right)
I\nu(ab) | |
I\nu+1(ab) |
.
We can eliminate the occurrence of the Bessel function to give the third order recurrence relation
a2 | |
2 |
Q\nu+2(a,b)=\left(
a2 | |
2 |
-\nu\right)Q\nu+1(a,b)+\left(
b2 | |
2 |
+\nu\right)Q\nu(a,b)-
b2 | |
2 |
Q\nu-1(a,b).
Q\nu+1(a,b)=Q\nu(a,b)+
1 | |
a |
\partial | |
\partiala |
Q\nu(a,b),
Q\nu-1(a,b)=Q\nu(a,b)+
1 | |
b |
\partial | |
\partialb |
Q\nu(a,b).
Q\nu(a,b)
\nu
infty | |
\sum | |
n=-infty |
tnQn(a,b)=
-(a2+b2)/2 | |
e |
t | |
1-t |
(b2t+a2/t)/2 | |
e |
,
where
|t|<1.
\nu=n
Qn(a,b)+Qn(b,a)=1+
-(a2+b2)/2 | |
e |
\left[I0(ab)+
n-1 | |
\sum | |
k=1 |
a2k+b2k | |
(ab)k |
Ik(ab)\right].
In particular, for
n=1
Q1(a,b)+Q1(b,a)=1+
-(a2+b2)/2 | |
e |
I0(ab).
Some specific values of Marcum-Q function are[6]
Q\nu(0,0)=1,
Q\nu(a,0)=1,
Q\nu(a,+infty)=0,
Q\nu(0,b)=
\Gamma(\nu,b2/2) | |
\Gamma(\nu) |
,
Q\nu(+infty,b)=1,
Qinfty(a,b)=1,
a=b
Q1(a,a)=
1 | |
2 |
[1+
-a2 | |
e |
2)], | |
I | |
0(a |
which when combined with the recursive formula gives
Qn(a,a)=
1 | |
2 |
[1+
-a2 | |
e |
2)] | |
I | |
0(a |
+
-a2 | |
e |
n-1 | |
\sum | |
k=1 |
2), | |
I | |
k(a |
Q-n(a,a)=
1 | |
2 |
[1+
-a2 | |
e |
2)] | |
I | |
0(a |
-
-a2 | |
e |
n | |
\sum | |
k=1 |
2), | |
I | |
k(a |
for any non-negative integer
n
\nu=1/2
Q1/2(a,b)=
1 | |
2 |
\left[erfc\left(
b-a | |
\sqrt{2 |
\nu=3/2
Q3/2(a,b)=Q1/2(a,b)+\sqrt{
2 | |
\pi |
\nu=5/2
Q5/2(a,b)=Q3/2(a,b)+\sqrt{
2 | |
\pi |
\nu
ab
\zeta=a/b>0
Q\nu(a,b)\sim
infty | |
\sum | |
n=0 |
\psin,
where
\psin
\psin=
1 | |
2\zeta\nu\sqrt{2\pi |
The functions
\phin
An
\phin=\left[
(b-a)2 | |
2ab |
| |||||
\right] | \Gamma\left( |
1 | |
2 |
-n,
(b-a)2 | |
2 |
\right),
An(\nu)=
| ||||||||||
|
.
The function
An(\nu)
An+1(\nu)=-
(2n+1)2-4\nu2 | |
8(n+1) |
An(\nu),
for
n\geq0
A0(\nu)=1.
\phi0=
\sqrt{2\piab | |
Hence, assuming
b>a
Q\nu(a,b)\sim\psi0=\left(
b | |
a |
| ||||
\right) |
Q(b-a),
where
Q( ⋅ )
Q\nu(a,b)\sim0.5
a\uparrowb.
For the case when
a>b
Q\nu(a,b)\sim1-\psi0=1-\left(
b | |
a |
| ||||
\right) |
Q(a-b).
Here too
Q\nu(a,b)\sim0.5
a\downarrowb.
Q\nu(a,b)
a
b
\partial | |
\partiala |
Q\nu(a,b)=a\left[Q\nu+1(a,b)-Q\nu(a,b)\right]=a\left(
b | |
a |
\right)\nu
-(a2+b2)/2 | |
e |
I\nu(ab),
\partial | |
\partialb |
Q\nu(a,b)=b\left[Q\nu-1(a,b)-Q\nu(a,b)\right]=-b\left(
b | |
a |
\right)\nu-1
-(a2+b2)/2 | |
e |
I\nu-1(ab).
We can relate the two partial derivatives as
1 | |
a |
\partial | |
\partiala |
Q\nu(a,b)+
1 | |
b |
\partial | |
\partialb |
Q\nu+1(a,b)=0.
Q\nu(a,b)
\partialn | |
\partialan |
Q\nu(a,b)=n!(-a)n
[n/2] | |
\sum | |
k=0 |
(-2a2)-k | |
k!(n-2k)! |
n-k | |
\sum | |
p=0 |
(-1)p\binom{n-k}{p}Q\nu+p(a,b),
\partialn | |
\partialbn |
Q\nu(a,b)=
n!a1-\nu | |
2nbn-\nu+1 |
-(a2+b2)/2 | |
e |
n | |
\sum | |
k=[n/2] |
(-2b2)k | |
(n-k)!(2k-n)! |
k-1 | |
\sum | |
p=0 |
\binom{k-1}{p}\left(-
a | |
b |
\right)pI\nu-p-1(ab).
2 | |
Q | |
\nu(a,b) |
>
Q\nu-1(a,b)+Q\nu+1(a,b) | |
2 |
>Q\nu-1(a,b)Q\nu+1(a,b)
for all
a\geqb>0
\nu>1
Various upper and lower bounds of generalized Marcum-Q function can be obtained using monotonicity and log-concavity of the function
\nu\mapstoQ\nu(a,b)
Q\nu(a,b)
\nu
Let
\lfloorx\rfloor0.5
\lceilx\rceil0.5
x
\lfloorx\rfloor0.5=\lfloorx-0.5\rfloor+0.5
\lceilx\rceil0.5=\lceilx+0.5\rceil-0.5
where
\lfloorx\rfloor
\lceilx\rceil
\nu\mapstoQ\nu(a,b)
a\geq0
b>0
Q | |
\lfloor\nu\rfloor0.5 |
(a,b)<Q\nu(a,b)<
Q | |
\lceil\nu\rceil0.5 |
(a,b).
However, the relative error of this bound does not tend to zero when
b\toinfty
\nu=n
Qn-0.5(a,b)<Qn(a,b)<Qn+0.5(a,b).
A very good approximation of the generalized Marcum Q-function for integer valued
\nu=n
Qn(a,b) ≈
Qn-0.5(a,b)+Qn+0.5(a,b) | |
2 |
.
\nu\mapstoQ\nu(a,b)
[1,infty)
Q | |
\nu1 |
\nu2-v | |
(a,b) |
Q | |
\nu2 |
v-\nu1 | |
(a,b) |
<Q\nu(a,b)<
| |||||||||||
|
,
where
\nu1=\lfloor\nu\rfloor0.5
\nu2=\lceil\nu\rceil0.5
\nu\geq1.5
a
\nu
b\toinfty
\nu=n
\sqrt{Qn(a,b)Qn(a,b)}<Qn(a,b)<Qn(a,b)\sqrt{
Qn(a,b) | |
Qn(a,b) |
Using the trigonometric integral representation for integer valued
\nu=n
-b2/2 | |
e |
\leqQn(a,b)\leq\exp\left[-
1 | |
2 |
(b2+a2)\right]\sqrt{I0(2ab)}\sqrt{
2n-1 | |
2 |
+
\zeta2(1-n) | |
2(1-\zeta2) |
1-Qn(a,b)\leq\exp\left[-
1 | |
2 |
(b2+a2)\right]\sqrt{I0(2ab)}\sqrt{
\zeta2(1-n) | |
2(\zeta2-1) |
where
\zeta=a/b>0
For analytical purpose, it is often useful to have bounds in simple exponential form, even though they may not be the tightest bounds achievable. Letting
\zeta=a/b>0
\nu=n
-(b+a)2/2 | |
e |
\leqQn(a,b)\leq
-(b-a)2/2 | |
e |
+
\zeta1-n-1 | |
\pi(1-\zeta) |
-(b-a)2/2 | |
\left[e |
-
-(b+a)2/2 | |
e |
\right], \zeta<1,
Qn(a,b)\geq1-
1 | |
2 |
-(a-b)2/2 | |
\left[e |
-
-(a+b)2/2 | |
e |
\right], \zeta>1.
When
n=1
-(b+a)2/2 | |
e |
\leqQ1(a,b)\leq
-(b-a)2/2 | |
e |
, \zeta<1,
1-
1 | |
2 |
-(a-b)2/2 | |
\left[e |
-
-(a+b)2/2 | |
e |
\right]\leqQ1(a,b), \zeta>1.
Another such bound obtained via Cauchy-Schwarz inequality is given as[3]
-b2/2 | |
e |
\leqQn(a,b)\leq
1 | \sqrt{ | |
2 |
2n-1 | |
2 |
+
\zeta2(1-n) | |
2(1-\zeta2) |
Qn(a,b)\geq1-
1 | \sqrt{ | |
2 |
\zeta2(1-n) | |
2(\zeta2-1) |
Chernoff-type bounds for the generalized Marcum Q-function, where
\nu=n
(1-2λ)-n\exp\left(-λb2+
λna2 | |
1-2λ |
\right)\geq\left\{\begin{array}{lr} Qn(a,b),&b2>n(a2+2)\\ 1-Qn(a,b),&b2<n(a2+2) \end{array} \right.
where the Chernoff parameter
(0<λ<1/2)
λ0
λ0=
1 | |
2 |
\left(1-
n | |
b2 |
-
n | |
b2 |
\sqrt{1+
(ab)2 | |
n |
The first-order Marcum-Q function can be semi-linearly approximated by [17]
\begin{align} Q1(a,b)= \begin{cases} 1,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~if~b<c1\ -\beta0
| |||||||||||
e |
I0\left(a\beta0\right)\left(b-\beta0\right)+Q1\left(a,\beta0\right),~~~~~if~c1\leqb\leqc2\\ 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~if~b>c2 \end{cases} \end{align}
\begin{align} \beta0=
a+\sqrt{a2+2 | |
\begin{align} c1(a)=
max(0,\beta | ||||||||||||||||||||||||
|
), \end{align}
\begin{align} c2(a)=
\beta | ||||||||||||||||||||||||
|
. \end{align}
It is convenient to re-express the Marcum Q-function as[18]
PN(X,Y)=QN(\sqrt{2NX},\sqrt{2Y}).
The
PN(X,Y)
N
X
Y
a
b
X=a2/2N
Y=b2/2
PN(X,Y)
PN(X,Y)=
infty | |
\sum | |
k=0 |
e-NX
(NX)k | |
k! |
N-1+k | |
\sum | |
m=0 |
e-Y
Ym | |
m! |
,
form two:[18]
PN(X,Y)=
N-1 | |
\sum | |
m=0 |
e-Y
Ym | |
m! |
+
infty | |
\sum | |
m=N |
e-Y
Ym | |
m! |
\left(1-
m-N | |
\sum | |
k=0 |
e-NX
(NX)k | |
k! |
\right),
form three:[18]
1-PN(X,Y)=
infty | |
\sum | |
m=N |
e-Y
Ym | |
m! |
m-N | |
\sum | |
k=0 |
e-NX
(NX)k | |
k! |
,
form four:[18]
1-PN(X,Y)=
infty | |
\sum | |
k=0 |
e-NX
(NX)k | |
k! |
\left(1-
N-1+k | |
\sum | |
m=0 |
e-Y
Ym | |
m! |
\right),
and form five:[18]
1-PN(X,Y)=e-(NX+Y)
infty | ||
\sum | \left( | |
r=N |
Y | |
NX |
\right)r/2Ir(2\sqrt{NXY}).
Among these five form, the second form is the most robust.[18]
The generalized Marcum Q-function can be used to represent the cumulative distribution function (cdf) of many random variables:
X\simExp(λ)
λ
FX(x)=1-Q1\left(0,\sqrt{2λx}\right)
X\simErlang(k,λ)
k
λ
FX(x)=1-Qk\left(0,\sqrt{2λx}\right)
X\sim
2 | |
\chi | |
k |
k
FX(x)=1-Qk/2(0,\sqrt{x})
X\simGamma(\alpha,\beta)
\alpha
\beta
FX(x)=1-Q\alpha(0,\sqrt{2\betax})
X\simWeibull(k,λ)
k
λ
FX(x)=1-Q1\left(0,\sqrt{2}\left(
x | |
λ |
| ||||
\right) |
\right)
X\simGG(a,d,p)
a,d,p
FX(x)=1-
Q | ||||
|
\left(0,\sqrt{2}\left(
x | |
a |
| ||||
\right) |
\right)
X\sim
2 | |
\chi | |
k(λ) |
λ
k
FX(x)=1-Qk/2(\sqrt{λ},\sqrt{x})
X\simRayleigh(\sigma)
\sigma
FX(x)=1-
Q | ||||
|
\right)
X\simMaxwell(\sigma)
\sigma
FX(x)=1-Q3/2\left(0,
x | |
\sigma |
\right)
X\sim\chik
k
FX(x)=1-Qk/2(0,x)
X\simNakagami(m,\Omega)
m
\Omega
FX(x)=1-Qm\left(0,\sqrt{
2m | |
\Omega |
X\simRice(\nu,\sigma)
\nu
\sigma
FX(x)=1-
Q | , | ||||
|
x | |
\sigma |
\right)
X\sim\chik(λ)
λ
k
FX(x)=1-Qk/2(λ,x)