Marcum Q-function explained

In statistics, the generalized Marcum Q-function of order

\nu

is defined as

Q\nu(a,b)=

1
a\nu-1
infty
\int
b

x\nu\exp\left(-

x2+a2
2

\right)I\nu-1(ax)dx

where

b\geq0

and

a,\nu>0

and

I\nu-1

is the modified Bessel function of first kind of order

\nu-1

. If

b>0

, the integral converges for any

\nu

. The Marcum Q-function occurs as a complementary cumulative distribution function for noncentral chi, noncentral chi-squared, and Rice distributions. In engineering, this function appears in the study of radar systems, communication systems, queueing system, and signal processing. This function was first studied for

\nu=1

, and hence named after, by Jess Marcum for pulsed radars.[1]

Properties

Finite integral representation

Using the fact that

Q\nu(a,0)=1

, the generalized Marcum Q-function can alternatively be defined as a finite integral as

Q\nu(a,b)=1-

1
a\nu-1
b
\int
0

x\nu\exp\left(-

x2+a2
2

\right)I\nu-1(ax)dx.

However, it is preferable to have an integral representation of the Marcum Q-function such that (i) the limits of the integral are independent of the arguments of the function, (ii) and that the limits are finite, (iii) and that the integrand is a Gaussian function of these arguments. For positive integer values of

\nu=n

, such a representation is given by the trigonometric integral[2] [3]

Qn(a,b)=\left\{\begin{array}{lr}Hn(a,b)&a<b,\\

1
2

+Hn(a,a)&a=b,\\ 1+Hn(a,b)&a>b, \end{array}\right.

where

Hn(a,b)=

\zeta1-n\exp\left(-
2\pi
a2+b2
2

\right)

2\pi
\int
0
\cos(n-1)\theta-\zeta\cosn\theta
1-2\zeta\cos\theta+\zeta2

\exp(ab\cos\theta)d\theta,

and the ratio

\zeta=a/b

is a constant.

For any real

\nu>0

, such finite trigonometric integral is given by[4]

Q\nu(a,b)=\left\{\begin{array}{lr}H\nu(a,b)+C\nu(a,b)&a<b,\\

1
2

+H\nu(a,a)+C\nu(a,b)&a=b,\\ 1+H\nu(a,b)+C\nu(a,b)&a>b, \end{array}\right.

where

Hn(a,b)

is as defined before,

\zeta=a/b

, and the additional correction term is given by

C\nu(a,b)=

\sin(\nu\pi)\exp\left(-
\pi
a2+b2
2

\right)

1
\int
0
(x/\zeta)\nu-1
\zeta+x

\exp\left[-

ab\left(x+
2
1
x

\right)\right]dx.

For integer values of

\nu

, the correction term

C\nu(a,b)

tend to vanish.

Monotonicity and log-concavity

Q\nu(a,b)

is strictly increasing in

\nu

and

a

for all

a\geq0

and

b,\nu>0

, and is strictly decreasing in

b

for all

a,b\geq0

and

\nu>0.

[5]

\nu\mapstoQ\nu(a,b)

is log-concave on

[1,infty)

for all

a,b\geq0.

[5]

b\mapstoQ\nu(a,b)

is strictly log-concave on

(0,infty)

for all

a\geq0

and

\nu>1

, which implies that the generalized Marcum Q-function satisfies the new-is-better-than-used property.[6]

a\mapsto1-Q\nu(a,b)

is log-concave on

[0,infty)

for all

b,\nu>0.

[5]

Series representation

\nu>0

can be represented using incomplete Gamma function as[7]

Q\nu(a,b)=1-

-a2/2
e
infty
\sum
k=0
1
k!
\gamma(\nu+k,b2)
2
\Gamma(\nu+k)

\left(

a2
2

\right)k,

where

\gamma(s,x)

is the lower incomplete Gamma function. This is usually called the canonical representation of the

\nu

-th order generalized Marcum Q-function.

\nu>0

can also be represented using generalized Laguerre polynomials as[7]

Q\nu(a,b)=1-

-a2/2
e
infty
\sum
k=0

(-1)k

(\nu-1)
L
(a2
2
)
k
\left(
\Gamma(\nu+k+1)
b2
2

\right)k+\nu,

where

(\alpha)
L
k

()

is the generalized Laguerre polynomial of degree

k

and of order

\alpha

.

\nu>0

can also be represented as Neumann series expansions[4]

Q\nu(a,b)=

-(a2+b2)/2
e
infty
\sum
\alpha=1-\nu

\left(

a
b

\right)\alphaI-\alpha(ab),

1-Q\nu(a,b)=

-(a2+b2)/2
e
infty
\sum
\alpha=\nu

\left(

b
a

\right)\alphaI\alpha(ab),

where the summations are in increments of one. Note that when

\alpha

assumes an integer value, we have

I\alpha(ab)=I-\alpha(ab)

.

\nu=n+1/2

, we have a closed form expression for the generalized Marcum Q-function as

Qn+1/2(a,b)=

1
2

\left[erfc\left(

b-a
\sqrt{2
}\right) + \mathrm\left(\frac\right) \right] + e^ \sum_^n \left(\frac\right)^ I_(ab),

where

erfc()

is the complementary error function. Since Bessel functions with half-integer parameter have finite sum expansions as[4]

I\pm(n+0.5)(z)=

1
\sqrt{\pi
} \sum_^n \frac \left[\frac{(-1)^k e^z \mp (-1)^n e^{-z}}{(2z)^{k+0.5}} \right],

where

n

is non-negative integer, we can exactly represent the generalized Marcum Q-function with half-integer parameter. More precisely, we have[4]

Qn+1/2(a,b)=Q(b-a)+Q(b+a)+

1
b\sqrt{2\pi
} \sum_^ \left(\frac\right)^i \sum_^ \frac \left[\frac{(-1)^k e^{-(a-b)^2/2} + (-1)^i e^{-(a+b)^2/2}}{(2ab)^k} \right],

for non-negative integers

n

, where

Q()

is the Gaussian Q-function. Alternatively, we can also more compactly express the Bessel functions with half-integer as sum of hyperbolic sine and cosine functions:[8]
I
n+1
2

(z)=\sqrt{

2z
\pi
} \left[g_n(z) \sinh(z) + g_{-n-1}(z) \cosh(z)\right],

where

g0(z)=z-1

,

g1(z)=-z-2

, and

gn-1(z)-gn+1(z)=(2n+1)z-1gn(z)

for any integer value of

n

.

Recurrence relation and generating function

Q\nu+1(a,b)-Q\nu(a,b)=\left(

b
a

\right)\nu

-(a2+b2)/2
e

I\nu(ab).

Q\nu-n(a,b)=Q\nu(a,b)-\left(

b
a

\right)\nu

-(a2+b2)/2
e
n
\sum\left(
k=1
a
b

\right)kI\nu-k(ab),

Q\nu+n(a,b)=Q\nu(a,b)+\left(

b
a

\right)\nu

-(a2+b2)/2
e
n-1
\sum\left(
k=0
b
a

\right)kI\nu+k(ab),

for positive integer

n

. The former recurrence can be used to formally define the generalized Marcum Q-function for negative

\nu

. Taking

Qinfty(a,b)=1

and

Q-infty(a,b)=0

for

n=infty

, we obtain the Neumann series representation of the generalized Marcum Q-function.

Q\nu+1(a,b)-(1+c\nu(a,b))Q\nu(a,b)+c\nu(a,b)Q\nu-1(a,b)=0,

where

c\nu(a,b)=\left(

b
a

\right)

I\nu(ab)
I\nu+1(ab)

.

We can eliminate the occurrence of the Bessel function to give the third order recurrence relation

a2
2

Q\nu+2(a,b)=\left(

a2
2

-\nu\right)Q\nu+1(a,b)+\left(

b2
2

+\nu\right)Q\nu(a,b)-

b2
2

Q\nu-1(a,b).

Q\nu+1(a,b)=Q\nu(a,b)+

1
a
\partial
\partiala

Q\nu(a,b),

Q\nu-1(a,b)=Q\nu(a,b)+

1
b
\partial
\partialb

Q\nu(a,b).

Q\nu(a,b)

for integral

\nu

is
infty
\sum
n=-infty

tnQn(a,b)=

-(a2+b2)/2
e
t
1-t
(b2t+a2/t)/2
e

,

where

|t|<1.

Symmetry relation

\nu=n

Qn(a,b)+Qn(b,a)=1+

-(a2+b2)/2
e

\left[I0(ab)+

n-1
\sum
k=1
a2k+b2k
(ab)k

Ik(ab)\right].

In particular, for

n=1

we have

Q1(a,b)+Q1(b,a)=1+

-(a2+b2)/2
e

I0(ab).

Special values

Some specific values of Marcum-Q function are[6]

Q\nu(0,0)=1,

Q\nu(a,0)=1,

Q\nu(a,+infty)=0,

Q\nu(0,b)=

\Gamma(\nu,b2/2)
\Gamma(\nu)

,

Q\nu(+infty,b)=1,

Qinfty(a,b)=1,

a=b

, by subtracting the two forms of Neumann series representations, we have[10]

Q1(a,a)=

1
2

[1+

-a2
e
2)],
I
0(a

which when combined with the recursive formula gives

Qn(a,a)=

1
2

[1+

-a2
e
2)]
I
0(a

+

-a2
e
n-1
\sum
k=1
2),
I
k(a

Q-n(a,a)=

1
2

[1+

-a2
e
2)]
I
0(a

-

-a2
e
n
\sum
k=1
2),
I
k(a

for any non-negative integer

n

.

\nu=1/2

, using the basic integral definition of generalized Marcum Q-function, we have[9] [10]

Q1/2(a,b)=

1
2

\left[erfc\left(

b-a
\sqrt{2
}\right) + \mathrm\left(\frac\right) \right].

\nu=3/2

, we have

Q3/2(a,b)=Q1/2(a,b)+\sqrt{

2
\pi
} \, \frac e^.

\nu=5/2

we have

Q5/2(a,b)=Q3/2(a,b)+\sqrt{

2
\pi
} \, \frac e^.

Asymptotic forms

\nu

to be fixed and

ab

large, let

\zeta=a/b>0

, then the generalized Marcum-Q function has the following asymptotic form[11]

Q\nu(a,b)\sim

infty
\sum
n=0

\psin,

where

\psin

is given by

\psin=

1
2\zeta\nu\sqrt{2\pi
} (-1)^n \left[A_n(\nu-1) - \zeta A_n(\nu) \right] \phi_n.

The functions

\phin

and

An

are given by

\phin=\left[

(b-a)2
2ab
n-1
2
\right]\Gamma\left(
1
2

-n,

(b-a)2
2

\right),

An(\nu)=

-n
2
\Gamma(1
2
+\nu+n)
n!\Gamma(1+\nu-n)
2

.

The function

An(\nu)

satisfies the recursion

An+1(\nu)=-

(2n+1)2-4\nu2
8(n+1)

An(\nu),

for

n\geq0

and

A0(\nu)=1.

\phi0=

\sqrt{2\piab
} \mathrm\left(\frac\right).

Hence, assuming

b>a

, the first term asymptotic approximation of the generalized Marcum-Q function is[11]

Q\nu(a,b)\sim\psi0=\left(

b
a
\nu-1
2
\right)

Q(b-a),

where

Q()

is the Gaussian Q-function. Here

Q\nu(a,b)\sim0.5

as

a\uparrowb.

For the case when

a>b

, we have[11]

Q\nu(a,b)\sim1-\psi0=1-\left(

b
a
\nu-1
2
\right)

Q(a-b).

Here too

Q\nu(a,b)\sim0.5

as

a\downarrowb.

Differentiation

Q\nu(a,b)

with respect to

a

and

b

is given by[12] [13]
\partial
\partiala

Q\nu(a,b)=a\left[Q\nu+1(a,b)-Q\nu(a,b)\right]=a\left(

b
a

\right)\nu

-(a2+b2)/2
e

I\nu(ab),

\partial
\partialb

Q\nu(a,b)=b\left[Q\nu-1(a,b)-Q\nu(a,b)\right]=-b\left(

b
a

\right)\nu-1

-(a2+b2)/2
e

I\nu-1(ab).

We can relate the two partial derivatives as

1
a
\partial
\partiala

Q\nu(a,b)+

1
b
\partial
\partialb

Q\nu+1(a,b)=0.

Q\nu(a,b)

with respect to its arguments is given by[10]
\partialn
\partialan

Q\nu(a,b)=n!(-a)n

[n/2]
\sum
k=0
(-2a2)-k
k!(n-2k)!
n-k
\sum
p=0

(-1)p\binom{n-k}{p}Q\nu+p(a,b),

\partialn
\partialbn

Q\nu(a,b)=

n!a1-\nu
2nbn-\nu+1
-(a2+b2)/2
e
n
\sum
k=[n/2]
(-2b2)k
(n-k)!(2k-n)!
k-1
\sum
p=0

\binom{k-1}{p}\left(-

a
b

\right)pI\nu-p-1(ab).

Inequalities

2
Q
\nu(a,b)

>

Q\nu-1(a,b)+Q\nu+1(a,b)
2

>Q\nu-1(a,b)Q\nu+1(a,b)

for all

a\geqb>0

and

\nu>1

.

Bounds

Based on monotonicity and log-concavity

Various upper and lower bounds of generalized Marcum-Q function can be obtained using monotonicity and log-concavity of the function

\nu\mapstoQ\nu(a,b)

and the fact that we have closed form expression for

Q\nu(a,b)

when

\nu

is half-integer valued.

Let

\lfloorx\rfloor0.5

and

\lceilx\rceil0.5

denote the pair of half-integer rounding operators that map a real

x

to its nearest left and right half-odd integer, respectively, according to the relations

\lfloorx\rfloor0.5=\lfloorx-0.5\rfloor+0.5

\lceilx\rceil0.5=\lceilx+0.5\rceil-0.5

where

\lfloorx\rfloor

and

\lceilx\rceil

denote the integer floor and ceiling functions.

\nu\mapstoQ\nu(a,b)

for all

a\geq0

and

b>0

gives us the following simple bound[14] [9] [15]
Q
\lfloor\nu\rfloor0.5

(a,b)<Q\nu(a,b)<

Q
\lceil\nu\rceil0.5

(a,b).

However, the relative error of this bound does not tend to zero when

b\toinfty

.[5] For integral values of

\nu=n

, this bound reduces to

Qn-0.5(a,b)<Qn(a,b)<Qn+0.5(a,b).

A very good approximation of the generalized Marcum Q-function for integer valued

\nu=n

is obtained by taking the arithmetic mean of the upper and lower bound[15]

Qn(a,b)

Qn-0.5(a,b)+Qn+0.5(a,b)
2

.

\nu\mapstoQ\nu(a,b)

on

[1,infty)

as[5]
Q
\nu1
\nu2-v
(a,b)
Q
\nu2
v-\nu1
(a,b)

<Q\nu(a,b)<

Q
\nu2-\nu+1
(a,b)
\nu2
Q
\nu2-\nu
(a,b)
\nu2+1

,

where

\nu1=\lfloor\nu\rfloor0.5

and

\nu2=\lceil\nu\rceil0.5

for

\nu\geq1.5

. The tightness of this bound improves as either

a

or

\nu

increases. The relative error of this bound converges to 0 as

b\toinfty

.[5] For integral values of

\nu=n

, this bound reduces to

\sqrt{Qn(a,b)Qn(a,b)}<Qn(a,b)<Qn(a,b)\sqrt{

Qn(a,b)
Qn(a,b)
}.

Cauchy-Schwarz bound

Using the trigonometric integral representation for integer valued

\nu=n

, the following Cauchy-Schwarz bound can be obtained[3]
-b2/2
e

\leqQn(a,b)\leq\exp\left[-

1
2

(b2+a2)\right]\sqrt{I0(2ab)}\sqrt{

2n-1
2

+

\zeta2(1-n)
2(1-\zeta2)
}, \qquad \zeta < 1,

1-Qn(a,b)\leq\exp\left[-

1
2

(b2+a2)\right]\sqrt{I0(2ab)}\sqrt{

\zeta2(1-n)
2(\zeta2-1)
}, \qquad \zeta > 1,

where

\zeta=a/b>0

.

Exponential-type bounds

For analytical purpose, it is often useful to have bounds in simple exponential form, even though they may not be the tightest bounds achievable. Letting

\zeta=a/b>0

, one such bound for integer valued

\nu=n

is given as[16] [3]
-(b+a)2/2
e

\leqQn(a,b)\leq

-(b-a)2/2
e

+

\zeta1-n-1
\pi(1-\zeta)
-(b-a)2/2
\left[e

-

-(b+a)2/2
e

\right],    \zeta<1,

Qn(a,b)\geq1-

1
2
-(a-b)2/2
\left[e

-

-(a+b)2/2
e

\right],    \zeta>1.

When

n=1

, the bound simplifies to give
-(b+a)2/2
e

\leqQ1(a,b)\leq

-(b-a)2/2
e

,    \zeta<1,

1-

1
2
-(a-b)2/2
\left[e

-

-(a+b)2/2
e

\right]\leqQ1(a,b),    \zeta>1.

Another such bound obtained via Cauchy-Schwarz inequality is given as[3]

-b2/2
e

\leqQn(a,b)\leq

1\sqrt{
2
2n-1
2

+

\zeta2(1-n)
2(1-\zeta2)
} \left[e^{-(b-a)^2/2} + e^{-(b+a)^2/2} \right], \qquad \zeta < 1

Qn(a,b)\geq1-

1\sqrt{
2
\zeta2(1-n)
2(\zeta2-1)
} \left[e^{-(b-a)^2/2} + e^{-(b+a)^2/2} \right], \qquad \zeta > 1.

Chernoff-type bound

Chernoff-type bounds for the generalized Marcum Q-function, where

\nu=n

is an integer, is given by[16] [3]

(1-2λ)-n\exp\left(b2+

λna2
1-2λ

\right)\geq\left\{\begin{array}{lr} Qn(a,b),&b2>n(a2+2)\\ 1-Qn(a,b),&b2<n(a2+2) \end{array} \right.

where the Chernoff parameter

(0<λ<1/2)

has optimum value

λ0

of

λ0=

1
2

\left(1-

n
b2

-

n
b2

\sqrt{1+

(ab)2
n
}\right).

Semi-linear approximation

The first-order Marcum-Q function can be semi-linearly approximated by [17]

\begin{align} Q1(a,b)= \begin{cases} 1,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~if~b<c1\ -\beta0

-1
2\right)
\left(a
0\right)
2
e

I0\left(a\beta0\right)\left(b-\beta0\right)+Q1\left(a,\beta0\right),~~~~~if~c1\leqb\leqc2\\ 0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~if~b>c2 \end{cases} \end{align}

where

\begin{align} \beta0=

a+\sqrt{a2+2
},\end

\begin{align} c1(a)=

max(0,\beta
0+Q1\left(a,\beta0\right)-1
\beta
-1
2\right)
\left(a
0\right)
2
e
I0\left(a\beta0\right)
0

), \end{align}

and

\begin{align} c2(a)=

\beta
0+Q1\left(a,\beta0\right)
\beta
-1
2\right)
\left(a
0\right)
2
e
I0\left(a\beta0\right)
0

. \end{align}

Equivalent forms for efficient computation

It is convenient to re-express the Marcum Q-function as[18]

PN(X,Y)=QN(\sqrt{2NX},\sqrt{2Y}).

The

PN(X,Y)

can be interpreted as the detection probability of

N

incoherently integrated received signal samples of constant received signal-to-noise ratio,

X

, with a normalized detection threshold

Y

. In this equivalent form of Marcum Q-function, for given

a

and

b

, we have

X=a2/2N

and

Y=b2/2

. Many expressions exist that can represent

PN(X,Y)

. However, the five most reliable, accurate, and efficient ones for numerical computation are given below. They are form one:[18]

PN(X,Y)=

infty
\sum
k=0

e-NX

(NX)k
k!
N-1+k
\sum
m=0

e-Y

Ym
m!

,

form two:[18]

PN(X,Y)=

N-1
\sum
m=0

e-Y

Ym
m!

+

infty
\sum
m=N

e-Y

Ym
m!

\left(1-

m-N
\sum
k=0

e-NX

(NX)k
k!

\right),

form three:[18]

1-PN(X,Y)=

infty
\sum
m=N

e-Y

Ym
m!
m-N
\sum
k=0

e-NX

(NX)k
k!

,

form four:[18]

1-PN(X,Y)=

infty
\sum
k=0

e-NX

(NX)k
k!

\left(1-

N-1+k
\sum
m=0

e-Y

Ym
m!

\right),

and form five:[18]

1-PN(X,Y)=e-(NX+Y)

infty
\sum\left(
r=N
Y
NX

\right)r/2Ir(2\sqrt{NXY}).

Among these five form, the second form is the most robust.[18]

Applications

The generalized Marcum Q-function can be used to represent the cumulative distribution function (cdf) of many random variables:

X\simExp(λ)

is a exponential distribution with rate parameter

λ

, then its cdf is given by

FX(x)=1-Q1\left(0,\sqrt{2λx}\right)

X\simErlang(k,λ)

is a Erlang distribution with shape parameter

k

and rate parameter

λ

, then its cdf is given by

FX(x)=1-Qk\left(0,\sqrt{2λx}\right)

X\sim

2
\chi
k
is a chi-squared distribution with

k

degrees of freedom, then its cdf is given by

FX(x)=1-Qk/2(0,\sqrt{x})

X\simGamma(\alpha,\beta)

is a gamma distribution with shape parameter

\alpha

and rate parameter

\beta

, then its cdf is given by

FX(x)=1-Q\alpha(0,\sqrt{2\betax})

X\simWeibull(k,λ)

is a Weibull distribution with shape parameters

k

and scale parameter

λ

, then its cdf is given by

FX(x)=1-Q1\left(0,\sqrt{2}\left(

x
λ
k
2
\right)

\right)

X\simGG(a,d,p)

is a generalized gamma distribution with parameters

a,d,p

, then its cdf is given by

FX(x)=1-

Q
d
p

\left(0,\sqrt{2}\left(

x
a
p
2
\right)

\right)

X\sim

2
\chi
k(λ)
is a non-central chi-squared distribution with non-centrality parameter

λ

and

k

degrees of freedom, then its cdf is given by

FX(x)=1-Qk/2(\sqrt{λ},\sqrt{x})

X\simRayleigh(\sigma)

is a Rayleigh distribution with parameter

\sigma

, then its cdf is given by

FX(x)=1-

Q
1\left(0,x
\sigma

\right)

X\simMaxwell(\sigma)

is a Maxwell–Boltzmann distribution with parameter

\sigma

, then its cdf is given by

FX(x)=1-Q3/2\left(0,

x
\sigma

\right)

X\sim\chik

is a chi distribution with

k

degrees of freedom, then its cdf is given by

FX(x)=1-Qk/2(0,x)

X\simNakagami(m,\Omega)

is a Nakagami distribution with

m

as shape parameter and

\Omega

as spread parameter, then its cdf is given by

FX(x)=1-Qm\left(0,\sqrt{

2m
\Omega
}x\right)

X\simRice(\nu,\sigma)

is a Rice distribution with parameters

\nu

and

\sigma

, then its cdf is given by

FX(x)=1-

Q,
1\left(\nu
\sigma
x
\sigma

\right)

X\sim\chik(λ)

is a non-central chi distribution with non-centrality parameter

λ

and

k

degrees of freedom, then its cdf is given by

FX(x)=1-Qk/2(λ,x)

Footnotes

  1. J.I. Marcum (1960). A statistical theory of target detection by pulsed radar: mathematical appendix, IRE Trans. Inform. Theory, vol. 6, 59-267.
  2. M.K. Simon and M.-S. Alouini (1998). A Unified Approach to the Performance of Digital Communication over Generalized Fading Channels, Proceedings of the IEEE, 86(9), 1860-1877.
  3. A. Annamalai and C. Tellambura (2001). Cauchy-Schwarz bound on the generalized Marcum-Q function with applications, Wireless Communications and Mobile Computing, 1(2), 243-253.
  4. A. Annamalai and C. Tellambura (2008). A Simple Exponential Integral Representation of the Generalized Marcum Q-Function QM(a,b) for Real-Order M with Applications. 2008 IEEE Military Communications Conference, San Diego, CA, USA
  5. Y. Sun, A. Baricz, and S. Zhou (2010). On the Monotonicity, Log-Concavity, and Tight Bounds of the Generalized Marcum and Nuttall Q-Functions. IEEE Transactions on Information Theory, 56(3), 1166–1186,
  6. Y. Sun and A. Baricz (2008). Inequalities for the generalized Marcum Q-function. Applied Mathematics and Computation 203(2008) 134-141.
  7. S. Andras, A. Baricz, and Y. Sun (2011) The Generalized Marcum Q-function: An Orthogonal Polynomial Approach. Acta Univ. Sapientiae Mathematica, 3(1), 60-76.
  8. M. Abramowitz and I.A. Stegun (1972). Formula 10.2.12, Modified Spherical Bessel Functions, Handbook of Mathematical functions, p. 443
  9. A. Annamalai, C. Tellambura and John Matyjas (2009). "A New Twist on the Generalized Marcum Q-Function QM(ab) with Fractional-Order M and its Applications". 2009 6th IEEE Consumer Communications and Networking Conference, 1–5,
  10. Y.A. Brychkov (2012). On some properties of the Marcum Q function. Integral Transforms and Special Functions 23(3), 177-182.
  11. N.M. Temme (1993). Asymptotic and numerical aspects of the noncentral chi-square distribution. Computers Math. Applic., 25(5), 55-63.
  12. W.K. Pratt (1968). Partial Differentials of Marcum's Q Function. Proceedings of the IEEE, 56(7), 1220-1221.
  13. R. Esposito (1968). Comment on Partial Differentials of Marcum's Q Function. Proceedings of the IEEE, 56(12), 2195-2195.
  14. V.M. Kapinas, S.K. Mihos, G.K. Karagiannidis (2009). On the Monotonicity of the Generalized Marcum and Nuttal Q-Functions. IEEE Transactions on Information Theory, 55(8), 3701-3710.
  15. R. Li, P.Y. Kam, and H. Fu (2010). New Representations and Bounds for the Generalized Marcum Q-Function via a Geometric Approach, and an Application. IEEE Trans. Commun., 58(1), 157-169.
  16. M.K. Simon and M.-S. Alouini (2000). Exponential-Type Bounds on the Generalized Marcum Q-Function with Application to Error Probability Analysis over Fading Channels. IEEE Trans. Commun. 48(3), 359-366.
  17. H. Guo, B. Makki, M. -S. Alouini and T. Svensson, "A Semi-Linear Approximation of the First-Order Marcum Q-Function With Application to Predictor Antenna Systems," in IEEE Open Journal of the Communications Society, vol. 2, pp. 273-286, 2021, doi: 10.1109/OJCOMS.2021.3056393.
  18. D.A. Shnidman (1989). The Calculation of the Probability of Detection and the Generalized Marcum Q-Function. IEEE Transactions on Information Theory, 35(2), 389-400.

References