In mathematics, the Marcinkiewicz - Zygmund inequality, named after Józef Marcinkiewicz and Antoni Zygmund, gives relations between moments of a collection of independent random variables. It is a generalization of the rule for the sum of variances of independent random variables to moments of arbitrary order. It is a special case of the Burkholder-Davis-Gundy inequality in the case of discrete-time martingales.
styleXi
stylei=1,\ldots,n
styleE\left(Xi\right)=0
styleE\left(\left\vertXi\right\vertp\right)<+infty
style1\leqp<+infty
ApE\left(\left(
n | |
\sum | |
i=1 |
\left\vertXi\right\vert2\right){
where
styleAp
styleBp
stylep
In the case
stylep=2
styleA2=B2=1
styleE\left(Xi\right)=0
styleE\left(\left\vertXi\right\vert2\right)<+infty
n | |
Var\left(\sum | |
i=1 |
Xi\right)=E\left(\left\vert
n | |
\sum | |
i=1 |
Xi\right\vert2\right)
n | |
=\sum | |
i=1 |
n | |
\sum | |
j=1 |
E\left(Xi\overline{X}j\right)
n | |
=\sum | |
i=1 |
E\left(\left\vertXi\right\vert2\right)
n | |
=\sum | |
i=1 |
Var\left(Xi\right).
Several similar moment inequalities are known as Khintchine inequality and Rosenthal inequalities, and there are also extensions to more general symmetric statistics of independent random variables.[3]