Marcinkiewicz–Zygmund inequality explained

In mathematics, the Marcinkiewicz - Zygmund inequality, named after Józef Marcinkiewicz and Antoni Zygmund, gives relations between moments of a collection of independent random variables. It is a generalization of the rule for the sum of variances of independent random variables to moments of arbitrary order. It is a special case of the Burkholder-Davis-Gundy inequality in the case of discrete-time martingales.

Statement of the inequality

Theorem [1] [2] If

styleXi

,

stylei=1,\ldots,n

, are independent random variables such that

styleE\left(Xi\right)=0

and

styleE\left(\left\vertXi\right\vertp\right)<+infty

,

style1\leqp<+infty

, then

ApE\left(\left(

n
\sum
i=1

\left\vertXi\right\vert2\right){

}^\right) \leq E\left(\left\vert \sum_^X_\right\vert ^\right) \leq B_E\left(\left(\sum_^\left\vert X_\right\vert ^\right) _^\right)

where

styleAp

and

styleBp

are positive constants, which depend only on

stylep

and not on the underlying distribution of the random variables involved.

The second-order case

In the case

stylep=2

, the inequality holds with

styleA2=B2=1

, and it reduces to the rule for the sum of variances of independent random variables with zero mean, known from elementary statistics: If

styleE\left(Xi\right)=0

and

styleE\left(\left\vertXi\right\vert2\right)<+infty

, then
n
Var\left(\sum
i=1

Xi\right)=E\left(\left\vert

n
\sum
i=1

Xi\right\vert2\right)

n
=\sum
i=1
n
\sum
j=1

E\left(Xi\overline{X}j\right)

n
=\sum
i=1

E\left(\left\vertXi\right\vert2\right)

n
=\sum
i=1

Var\left(Xi\right).

See also

Several similar moment inequalities are known as Khintchine inequality and Rosenthal inequalities, and there are also extensions to more general symmetric statistics of independent random variables.[3]

Notes

  1. J. Marcinkiewicz and A. Zygmund. Sur les fonctions indépendantes. Fund. Math., 28:60 - 90, 1937. Reprinted in Józef Marcinkiewicz, Collected papers, edited by Antoni Zygmund, Panstwowe Wydawnictwo Naukowe, Warsaw, 1964, pp. 233 - 259.
  2. Yuan Shih Chow and Henry Teicher. Probability theory. Independence, interchangeability, martingales. Springer-Verlag, New York, second edition, 1988.
  3. R. Ibragimov and Sh. Sharakhmetov. Analogues of Khintchine, Marcinkiewicz - Zygmund and Rosenthal inequalities for symmetric statistics. Scandinavian Journal of Statistics, 26(4):621 - 633, 1999.