Maltol Explained

Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is found in nature in the bark of larch trees and in the needles of pine trees, and is produced during the roasting of malt (from which it gets its name) and in the baking of bread. It has the odor of caramel and is used to impart a pleasant aroma to foods and fragrances.

It is used as a flavor enhancer, is designated in the U.S. as INS number 636,and is known in the European E number food additive series as E636.

Chemistry

Maltol is a white crystalline powder that is soluble in hot water and other polar solvents.Like related 3-hydroxy-4-pyrones such as kojic acid, it binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+.[1]

Related to this property, maltol has been reported to greatly increase aluminium uptake in the body[2] and to increase the oral bioavailability of gallium[3] and iron.[4]

Maltol's strong metal binding affinity (good iron chelator), high bioavailability, and low toxicity profile make it an excellent scaffold for designing novel compounds for therapeutic applications.[5] [6]

See also

References

  1. B. D. Liboiron . K. H. Thompson . G. R. Hanson . E. Lam . N. Aebischer . C. Orvig . New Insights into the Interactions of Serum Proteins with Bis(maltolato)oxovanadium(IV): Transport and Biotransformation of Insulin-Enhancing Vanadium Pharmaceuticals . . 2005 . 127 . 5104–5115 . 10.1021/ja043944n . 15810845 . 14.
  2. N. Kaneko . H. Yasui . J. Takada . K. Suzuki . H. Sakurai . Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice . J. Inorg. Biochem.. 2004 . 98 . 2022–2031. 10.1016/j.jinorgbio.2004.09.008 . 15541491 . 12.
  3. L. R. Bernstein . T. Tanner . C. Godfrey . B. Noll . Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability . Metal-Based Drugs. 2000 . 7 . 33–48 . 10.1155/MBD.2000.33 . 18475921 . 1 . 2365198. free .
  4. D.M. Reffitt . T.J. Burden . P.T. Seed . J. Wood J . R.P. Thompson . J.J. Powell . Assessment of iron absorption from ferric trimaltol . Ann. Clin. Biochem. . 2000 . 37 . 457–66. 10.1258/0004563001899645 . 10902861 . 4 .
  5. S. Fusi . M. Frosini . M. Biagi . K. Zór . T. Rindzevicius . M.C. Baratto . L. De Vico . M.Corsini. Iron(III) complexing ability of new ligands based on natural γ-pyrone maltol . Polyhedron. 2020 . 187 . 114650. 10.1016/j.poly.2020.114650. 225190524 .
  6. E. Cini . G. Crisponi . A. Fantasia . R. Cappai . S. Siciliano . G. Di Florio . V.M. Nurchi . M.Corsini. Multipurpose Iron-Chelating Ligands Inspired by Bioavailable Molecules . Biomolecules. 2024 . 14 . 92. 10.3390/biom14010092. free . 10813012 .