In mathematics, the Malliavin derivative is a notion of derivative in the Malliavin calculus. Intuitively, it is the notion of derivative appropriate to paths in classical Wiener space, which are "usually" not differentiable in the usual sense.
Let
H
C0
H:=\{f\inW1,2([0,T];Rn) | f(0)=0\}:=\{pathsstartingat0withfirstderivativeinL2\}
C0:=C0([0,T];Rn):=\{continuouspathsstartingat0\};
By the Sobolev embedding theorem,
H\subsetC0
i:H\toC0
Suppose that
F:C0\toR
DF:C0\toLin(C0;R);
i.e., for paths
\sigma\inC0
DF(\sigma)
* | |
C | |
0 |
C0
DHF(\sigma)
H\toR
DHF(\sigma):=DF(\sigma)\circi:H\toR,
sometimes known as the H-derivative. Now define
\nablaHF:C0\toH
DHF
T | |
\int | |
0 |
\left(\partialt\nablaHF(\sigma)\right) ⋅ \partialth:=\langle\nablaHF(\sigma),h\rangleH=\left(DHF\right)(\sigma)(h)=\limt
F(\sigma+ti(h))-F(\sigma) | |
t |
.
Then the Malliavin derivative
Dt
\left(DtF\right)(\sigma):=
\partial | |
\partialt |
\left(\left(\nablaHF\right)(\sigma)\right).
The domain of
Dt
F
C0
L2([0,T];Rn)
The Skorokhod integral
\delta
\delta:=\left(Dt\right)*:\operatorname{image}\left(Dt\right)\subseteqL2([0,T];Rn)\toF*=Lin(F;R).