Major facilitator superfamily explained

Symbol:MFS
Major Facilitator Superfamily
Pfam Clan:CL0015
Tcdb:2.A.1
Opm Family:15
Cdd:cd06174

The major facilitator superfamily (MFS) is a superfamily of membrane transport proteins that facilitate movement of small solutes across cell membranes in response to chemiosmotic gradients.[1] [2]

Function

The major facilitator superfamily (MFS) are membrane proteins which are expressed ubiquitously in all kingdoms of life for the import or export of target substrates. The MFS family was originally believed to function primarily in the uptake of sugars but subsequent studies revealed that drugs, metabolites, oligosaccharides, amino acids and oxyanions were all transported by MFS family members.[3] These proteins energetically drive transport utilizing the electrochemical gradient of the target substrate (uniporter), or act as a cotransporter where transport is coupled to the movement of a second substrate.

Fold

The basic fold of the MFS transporter is built around 12,[4] or in some cases, 14 transmembrane helices[5] (TMH), with two 6- (or 7-) helix bundles formed by the N and C terminal homologous domains[6] of the transporter which are connected by an extended cytoplasmic loop. The two halves of the protein pack against each other in a clam-shell fashion, sealing via interactions at the ends of the transmembrane helices and extracellular loops.[7] [8] This forms a large aqueous cavity at the center of the membrane, which is alternatively open to the cytoplasm or periplasm/extracellular space. Lining this aqueous cavity are the amino-acids which bind the substrates and define transporter specificity.[9] [10] Many MFS transporters are thought to be dimers through in vitro and in vivo methods, with some evidence to suggest a functional role for this oligomerization.[11]

Mechanism

The alternating-access mechanism thought to underlie the transport of most MFS transport is classically described as the "rocker-switch" mechanism.[7] [8] In this model, the transporter opens to either the extracellular space or cytoplasm and simultaneously seals the opposing face of the transporter, preventing a continuous pathway across the membrane. For example, in the best studied MFS transporter, LacY, lactose and protons typically bind from the periplasm to specific sites within the aqueous cleft. This drives closure of the extracellular face, and opening of the cytoplasmic side, allowing substrate into the cell. Upon substrate release, the transporter recycles to the periplasmic facing orientation.

Exporters and antiporters of the MFS family follow a similar reaction cycle, though exporters bind substrate in the cytoplasm and extrude it to the extracellular or periplasmic space, while antiporters bind substrate in both states to drive each conformational change. While most MFS structures suggest large, rigid body structural changes with substrate binding, the movements may be small in the cases of small substrates, such as the nitrate transporter NarK.[12]

Transport

The generalized transport reactions catalyzed by MFS porters are:

  1. Uniport: S (out) ⇌ S (in)
  2. Symport: S (out) + [H<sup>+</sup> or Na<sup>+</sup>] (out) ⇌ S (in) + [H<sup>+</sup> or Na<sup>+</sup>] (in)
  3. Antiport: S1 (out) + S2 (in) ⇌ S1 (in) + S2 (out) (S1 may be H+ or a solute)

Substrate specificity

Though initially identified as sugar transporters, a function conserved from prokaryotes[10] to mammals,[13] the MFS family is notable for the great diversity of substrates transported by the superfamily. These range from small oxyanions[14] [15] [16] to large peptide fragments.[17] Other MFS transporters are notable for a lack of selectivity, extruding broad classes of drugs and xenobiotics.[18] [19] [20] This substrate specificity is largely determined by specific side chains which line the aqueous pocket at the center of the membrane.[9] [10] While one substrate of particular biological importance is often used to name the transporter or family, there may also be co-transported or leaked ions or molecules. These include water molecules[21] [22] or the coupling ions which energetically drive transport.

Structures

The crystal structures of a number of MFS transporters have been characterized. The first structures were of the glycerol 3-phosphate/phosphate exchanger GlpT[8] and the lactose-proton symporter LacY,[7] which served to elucidate the overall structure of the protein family and provided initial models for understanding the MFS transport mechanism. Since these initial structures other MFS structures have been solved which illustrate substrate specificity or states within the reaction cycle.[23] [24] While the initial MFS structures solved were of bacterial transporters, recently structures of the first eukaryotic structures have been published. These include a fungal phosphate transporter PiPT,[16] plant nitrate transporter NRT1.1,[11] [25] and the human glucose transporter GLUT1.[26]

Evolution

The origin of the basic MFS transporter fold is currently under heavy debate. All currently recognized MFS permeases have the two six-TMH domains within a single polypeptide chain, although in some MFS families an additional two TMHs are present. Evidence suggests that the MFS permeases arose by a tandem intragenic duplication event in the early prokaryotes. This event generated the 12 transmembrane helix topology from a (presumed) primordial 6-helix dimer. Moreover, the well-conserved MFS specific motif between TMS2 and TMS3 and the related but less well conserved motif between TMS8 and TMS9 prove to be a characteristic of virtually all of the more than 300 MFS proteins identified.[27] However, the origin of the primordial 6-helix domain is under heavy debate. While some functional and structural evidence suggests that this domain arose out of a simpler 3-helix domain,[28] [29] bioinformatic or phylogenetic evidence supporting this hypothesis is lacking.[30] [31]

Medical significance

MFS family members are central to human physiology and play an important role in a number of diseases, through aberrant action, drug transport, or drug resistance. The OAT1 transporter transports a number of nucleoside analogs central to antiviral therapy.[32] Resistance to antibiotics is frequently the result of action of MFS resistance genes.[33] Mutations in MFS transporters have also been found to cause neurodegerative disease,[34] vascular disorders of the brain,[35] and glucose storage diseases.[36]

Disease mutations

Disease associated mutations have been found in a number of human MFS transporters; those annotated in Uniprot are listed below.

Human MFS proteins

There are several MFS proteins in humans, where they are known as solute carriers (SLCs) and Atypical SLCs.[62] There are today 52 SLC families,[63] of which 16 families include MFS proteins; SLC2, 15 16, 17, 18, 19, SLCO (SLC21), 22, 29, 33, 37, 40, 43, 45, 46 and 49. Atypical SLCs are MFS proteins, sharing sequence similarities and evolutionary origin with SLCs,[64] [65] [66] but they are not named according to the SLC root system, which originates from the hugo gene nomenclature system (HGNC).[67] All atypical SLCs are listed in detail in, but they are: MFSD1, MFSD2A,[68] MFSD2B, MFSD3, MFSD4A,[69] MFSD4B,[70] MFSD5, MFSD6, MFSD6L, MFSD8,[71] MFSD9, MFSD10,[72] MFSD11, MFSD12, MFSD13A, MFSD14A,[73] MFSD14B, UNC93A,[74] [75] [76] UNC93B1,[77] SV2A, SV2B, SV2C, SVOP, SVOPL, SPNS1,[78] SPNS2, SPNS3 and CLN3.[79] As there is high sequence identity and phylogenetic resemblance between the atypical SLCs of MFS type, they can be divided into 15 AMTFs (Atypical MFS Transporter Families), suggesting there are at least 64 different families including SLC proteins of MFS type.[80]

Notes and References

  1. Pao SS, Paulsen IT, Saier MH . Major facilitator superfamily . Microbiology and Molecular Biology Reviews . 62 . 1 . 1–34 . March 1998 . 9529885 . 98904 . 10.1128/MMBR.62.1.1-34.1998 .
  2. Walmsley AR, Barrett MP, Bringaud F, Gould GW . Sugar transporters from bacteria, parasites and mammals: structure-activity relationships . Trends in Biochemical Sciences . 23 . 12 . 476–81 . December 1998 . 9868370 . 10.1016/S0968-0004(98)01326-7 .
  3. Marger MD, Saier MH . A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport . Trends in Biochemical Sciences . 18 . 1 . 13–20 . January 1993 . 8438231 . 10.1016/0968-0004(93)90081-w .
  4. Foster DL, Boublik M, Kaback HR . Structure of the lac carrier protein of Escherichia coli . The Journal of Biological Chemistry . 258 . 1 . 31–4 . January 1983 . 10.1016/S0021-9258(18)33213-7 . 6336750 . free .
  5. Paulsen IT, Brown MH, Littlejohn TG, Mitchell BA, Skurray RA . Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity . Proceedings of the National Academy of Sciences of the United States of America . 93 . 8 . 3630–5 . April 1996 . 8622987 . 39662 . 10.1073/pnas.93.8.3630 . 1996PNAS...93.3630P . free .
  6. Maiden MC, Davis EO, Baldwin SA, Moore DC, Henderson PJ . Mammalian and bacterial sugar transport proteins are homologous . Nature . 325 . 6105 . 641–3 . Feb 12–18, 1987 . 3543693 . 10.1038/325641a0 . 1987Natur.325..641M . 4353429 .
  7. Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S . Structure and mechanism of the lactose permease of Escherichia coli . Science . 301 . 5633 . 610–5 . August 2003 . 12893935 . 10.1126/science.1088196 . 2003Sci...301..610A . 36908983 .
  8. Huang Y, Lemieux MJ, Song J, Auer M, Wang DN . Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli . Science . 301 . 5633 . 616–20 . August 2003 . 12893936 . 10.1126/science.1087619 . 2003Sci...301..616H . 14078813 .
  9. Yan N . Structural advances for the major facilitator superfamily (MFS) transporters . Trends in Biochemical Sciences . 38 . 3 . 151–9 . March 2013 . 23403214 . 10.1016/j.tibs.2013.01.003 .
  10. Kaback HR, Sahin-Tóth M, Weinglass AB . The kamikaze approach to membrane transport . Nature Reviews Molecular Cell Biology . 2 . 8 . 610–20 . August 2001 . 11483994 . 10.1038/35085077 . 31325451 .
  11. Sun J, Bankston JR, Payandeh J, Hinds TR, Zagotta WN, Zheng N . Crystal structure of the plant dual-affinity nitrate transporter NRT1.1 . Nature . 507 . 7490 . 73–7 . March 2014 . 24572362 . 10.1038/nature13074 . 3968801. 2014Natur.507...73S .
  12. Zheng H, Wisedchaisri G, Gonen T . Crystal structure of a nitrate/nitrite exchanger . Nature . 497 . 7451 . 647–51 . May 2013 . 23665960 . 10.1038/nature12139 . 3669217. 2013Natur.497..647Z .
  13. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF . Sequence and structure of a human glucose transporter . Science . 229 . 4717 . 941–5 . September 1985 . 3839598 . 10.1126/science.3839598 . 1985Sci...229..941M .
  14. Yan H, Huang W, Yan C, Gong X, Jiang S, Zhao Y, Wang J, Shi Y . Structure and mechanism of a nitrate transporter . Cell Reports . 3 . 3 . 716–23 . March 2013 . 23523348 . 10.1016/j.celrep.2013.03.007 . free .
  15. Tsay YF, Schroeder JI, Feldmann KA, Crawford NM . The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter . Cell . 72 . 5 . 705–13 . March 1993 . 8453665 . 10.1016/0092-8674(93)90399-b . free .
  16. Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM . Crystal structure of a eukaryotic phosphate transporter . Nature . 496 . 7446 . 533–6 . April 2013 . 23542591 . 10.1038/nature12042 . 3678552. 2013Natur.496..533P .
  17. Doki S, Kato HE, Solcan N, Iwaki M, Koyama M, Hattori M, Iwase N, Tsukazaki T, Sugita Y, Kandori H, Newstead S, Ishitani R, Nureki O . Structural basis for dynamic mechanism of proton-coupled symport by the peptide transporter POT . Proceedings of the National Academy of Sciences of the United States of America . 110 . 28 . 11343–8 . July 2013 . 23798427 . 3710879 . 10.1073/pnas.1301079110 . 2013PNAS..11011343D . free .
  18. Jiang D, Zhao Y, Wang X, Fan J, Heng J, Liu X, Feng W, Kang X, Huang B, Liu J, Zhang XC . Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A . Proceedings of the National Academy of Sciences of the United States of America . 110 . 36 . 14664–9 . September 2013 . 23950222 . 10.1073/pnas.1308127110 . 3767500. 2013PNAS..11014664J . free .
  19. Putman M, van Veen HW, Konings WN . Molecular properties of bacterial multidrug transporters . Microbiology and Molecular Biology Reviews . 64 . 4 . 672–93 . December 2000 . 11104814 . 10.1128/mmbr.64.4.672-693.2000 . 99009.
  20. Yin Y, He X, Szewczyk P, Nguyen T, Chang G . Structure of the multidrug transporter EmrD from Escherichia coli . Science . 312 . 5774 . 741–4 . May 2006 . 16675700 . 10.1126/science.1125629 . 3152482. 2006Sci...312..741Y .
  21. Li J, Shaikh SA, Enkavi G, Wen PC, Huang Z, Tajkhorshid E . Transient formation of water-conducting states in membrane transporters . Proceedings of the National Academy of Sciences of the United States of America . 110 . 19 . 7696–701 . May 2013 . 23610412 . 10.1073/pnas.1218986110 . 3651479. 2013PNAS..110.7696L . free .
  22. Fischbarg J, Kuang KY, Vera JC, Arant S, Silverstein SC, Loike J, Rosen OM . Glucose transporters serve as water channels . Proceedings of the National Academy of Sciences of the United States of America . 87 . 8 . 3244–7 . April 1990 . 2326282 . 10.1073/pnas.87.8.3244 . 53872. 1990PNAS...87.3244F . free .
  23. Dang S, Sun L, Huang Y, Lu F, Liu Y, Gong H, Wang J, Yan N . Structure of a fucose transporter in an outward-open conformation . Nature . 467 . 7316 . 734–8 . October 2010 . 20877283 . 10.1038/nature09406 . 2010Natur.467..734D . 205222401 .
  24. Kumar H, Kasho V, Smirnova I, Finer-Moore JS, Kaback HR, Stroud RM . Structure of sugar-bound LacY . Proceedings of the National Academy of Sciences of the United States of America . 111 . 5 . 1784–8 . February 2014 . 24453216 . 10.1073/pnas.1324141111 . 3918835. 2014PNAS..111.1784K . free .
  25. Parker JL, Newstead S . Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1 . Nature . 507 . 7490 . 68–72 . March 2014 . 24572366 . 10.1038/nature13116 . 3982047. 2014Natur.507...68P .
  26. Deng D, Xu C, Sun P, Wu J, Yan C, Hu M, Yan N . Crystal structure of the human glucose transporter GLUT1 . Nature . 510 . 7503 . 121–5 . June 2014 . 24847886 . 10.1038/nature13306 . 2014Natur.510..121D . 205238604 .
  27. Henderson PJ . The homologous glucose transport proteins of prokaryotes and eukaryotes . Research in Microbiology . 141 . 3 . 316–28 . Mar–Apr 1990 . 2177911 . 10.1016/0923-2508(90)90005-b .
  28. Madej MG, Dang S, Yan N, Kaback HR . Evolutionary mix-and-match with MFS transporters . Proceedings of the National Academy of Sciences of the United States of America . 110 . 15 . 5870–4 . April 2013 . 23530251 . 10.1073/pnas.1303538110 . 3625355. 2013PNAS..110.5870M . free .
  29. Madej MG, Kaback HR . Evolutionary mix-and-match with MFS transporters II . Proceedings of the National Academy of Sciences of the United States of America . 110 . 50 . E4831-8 . December 2013 . 24259711 . 10.1073/pnas.1319754110 . 3864288. 2013PNAS..110E4831M . free .
  30. Västermark A, Lunt B, Saier M . Major facilitator superfamily porters, LacY, FucP and XylE of Escherichia coli appear to have evolved positionally dissimilar catalytic residues without rearrangement of 3-TMS repeat units . Journal of Molecular Microbiology and Biotechnology . 24 . 2 . 82–90 . 2014 . 24603210 . 10.1159/000358429 . 4048653.
  31. Västermark A, Saier MH . Major Facilitator Superfamily (MFS) evolved without 3-transmembrane segment unit rearrangements . Proceedings of the National Academy of Sciences of the United States of America . 111 . 13 . E1162-3 . April 2014 . 24567407 . 10.1073/pnas.1400016111 . 3977298. 2014PNAS..111E1162V . free .
  32. Wada S, Tsuda M, Sekine T, Cha SH, Kimura M, Kanai Y, Endou H . Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs . The Journal of Pharmacology and Experimental Therapeutics . 294 . 3 . 844–9 . September 2000 . 10945832 .
  33. Fluman N, Bibi E . Bacterial multidrug transport through the lens of the major facilitator superfamily . Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics . 1794 . 5 . 738–47 . May 2009 . 19103310 . 10.1016/j.bbapap.2008.11.020 .
  34. Aldahmesh MA, Al-Hassnan ZN, Aldosari M, Alkuraya FS . Neuronal ceroid lipofuscinosis caused by MFSD8 mutations: a common theme emerging . Neurogenetics . 10 . 4 . 307–11 . October 2009 . 19277732 . 10.1007/s10048-009-0185-1 . 36438803 .
  35. Meyer E, Ricketts C, Morgan NV, Morris MR, Pasha S, Tee LJ, Rahman F, Bazin A, Bessières B, Déchelotte P, Yacoubi MT, Al-Adnani M, Marton T, Tannahill D, Trembath RC, Fallet-Bianco C, Cox P, Williams D, Maher ER . Mutations in FLVCR2 are associated with proliferative vasculopathy and hydranencephaly-hydrocephaly syndrome (Fowler syndrome) . American Journal of Human Genetics . 86 . 3 . 471–8 . March 2010 . 20206334 . 10.1016/j.ajhg.2010.02.004 . 2833392.
  36. Pascual JM, Wang D, Lecumberri B, Yang H, Mao X, Yang R, De Vivo DC . GLUT1 deficiency and other glucose transporter diseases . European Journal of Endocrinology . 150 . 5 . 627–33 . May 2004 . 15132717 . 10.1530/eje.0.1500627 . free .
  37. Gerin I, Veiga-da-Cunha M, Achouri Y, Collet JF, Van Schaftingen E . Sequence of a putative glucose 6-phosphate translocase, mutated in glycogen storage disease type Ib . FEBS Letters . 419 . 2–3 . 235–8 . December 1997 . 9428641 . 10.1016/s0014-5793(97)01463-4 . 31851796 . free .
  38. Rajadhyaksha AM, Elemento O, Puffenberger EG, Schierberl KC, Xiang JZ, Putorti ML, Berciano J, Poulin C, Brais B, Michaelides M, Weleber RG, Higgins JJ . Mutations in FLVCR1 cause posterior column ataxia and retinitis pigmentosa . American Journal of Human Genetics . 87 . 5 . 643–54 . November 2010 . 21070897 . 10.1016/j.ajhg.2010.10.013 . 2978959.
  39. Lin P, Li J, Liu Q, Mao F, Li J, Qiu R, Hu H, Song Y, Yang Y, Gao G, Yan C, Yang W, Shao C, Gong Y . A missense mutation in SLC33A1, which encodes the acetyl-CoA transporter, causes autosomal-dominant spastic paraplegia (SPG42) . American Journal of Human Genetics . 83 . 6 . 752–9 . December 2008 . 19061983 . 2668077 . 10.1016/j.ajhg.2008.11.003 .
  40. Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, van der Spek PJ, Mancini GM . A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases . Nature Genetics . 23 . 4 . 462–5 . December 1999 . 10581036 . 10.1038/70585 . 5709302 .
  41. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, Fox JE, Mancini GM, Kambouris M, Gardella R, Facchetti F, Willems PJ, Forsyth R, Dietz HC, Barlati S, Colombi M, Loeys B, De Paepe A . Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome . Nature Genetics . 38 . 4 . 452–7 . April 2006 . 16550171 . 10.1038/ng1764 . 11379/29243 . 836017 . free .
  42. Vázquez-Mellado J, Jiménez-Vaca AL, Cuevas-Covarrubias S, Alvarado-Romano V, Pozo-Molina G, Burgos-Vargas R . Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout . Rheumatology . 46 . 2 . 215–9 . February 2007 . 16837472 . 10.1093/rheumatology/kel205 . free .
  43. Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS, Parton LE, Schuit F, Quintens R, Sipilä I, Mayatepek E, Meissner T, Halestrap AP, Rutter GA, Kere J . Physical exercise-induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells . American Journal of Human Genetics . 81 . 3 . 467–74 . September 2007 . 17701893 . 10.1086/520960 . 1950828.
  44. Burwinkel B, Kreuder J, Schweitzer S, Vorgerd M, Gempel K, Gerbitz KD, Kilimann MW . Carnitine transporter OCTN2 mutations in systemic primary carnitine deficiency: a novel Arg169Gln mutation and a recurrent Arg282ter mutation associated with an unconventional splicing abnormality . Biochemical and Biophysical Research Communications . 261 . 2 . 484–7 . August 1999 . 10425211 . 10.1006/bbrc.1999.1060 .
  45. Munroe PB, Mitchison HM, O'Rawe AM, Anderson JW, Boustany RM, Lerner TJ, Taschner PE, de Vos N, Breuning MH, Gardiner RM, Mole SE . Spectrum of mutations in the Batten disease gene, CLN3 . American Journal of Human Genetics . 61 . 2 . 310–6 . August 1997 . 9311735 . 1715900 . 10.1086/514846 .
  46. Williams AL, Jacobs SB, Moreno-Macías H, Huerta-Chagoya A, Churchhouse C, Márquez-Luna C, García-Ortíz H, Gómez-Vázquez MJ, Burtt NP, Aguilar-Salinas CA, González-Villalpando C, Florez JC, Orozco L, Haiman CA, Tusié-Luna T, Altshuler D . Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico . Nature . 506 . 7486 . 97–101 . February 2014 . 24390345 . 10.1038/nature12828 . 4127086. 2014Natur.506...97T .
  47. Matsuo H, Chiba T, Nagamori S, Nakayama A, Domoto H, Phetdee K, Wiriyasermkul P, Kikuchi Y, Oda T, Nishiyama J, Nakamura T, Morimoto Y, Kamakura K, Sakurai Y, Nonoyama S, Kanai Y, Shinomiya N . Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia . American Journal of Human Genetics . 83 . 6 . 744–51 . December 2008 . 19026395 . 10.1016/j.ajhg.2008.11.001 . 2668068.
  48. Zeng WQ, Al-Yamani E, Acierno JS, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF . Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3 . American Journal of Human Genetics . 77 . 1 . 16–26 . July 2005 . 15871139 . 1226189 . 10.1086/431216 .
  49. Kloeckener-Gruissem B, Vandekerckhove K, Nürnberg G, Neidhardt J, Zeitz C, Nürnberg P, Schipper I, Berger W . Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria . American Journal of Human Genetics . 82 . 3 . 772–9 . March 2008 . 18304496 . 10.1016/j.ajhg.2007.12.013 . 2427214.
  50. Labay V, Raz T, Baron D, Mandel H, Williams H, Barrett T, Szargel R, McDonald L, Shalata A, Nosaka K, Gregory S, Cohen N . Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness . Nature Genetics . 22 . 3 . 300–4 . July 1999 . 10391221 . 10.1038/10372 . 26615141 .
  51. Kousi M, Siintola E, Dvorakova L, Vlaskova H, Turnbull J, Topcu M, Yuksel D, Gokben S, Minassian BA, Elleder M, Mole SE, Lehesjoki AE . Mutations in CLN7/MFSD8 are a common cause of variant late-infantile neuronal ceroid lipofuscinosis . Brain . 132 . Pt 3 . 810–9 . March 2009 . 19201763 . 10.1093/brain/awn366 . free .
  52. Zaahl MG, Merryweather-Clarke AT, Kotze MJ, van der Merwe S, Warnich L, Robson KJ . Analysis of genes implicated in iron regulation in individuals presenting with primary iron overload . Human Genetics . 115 . 5 . 409–17 . October 2004 . 15338274 . 10.1007/s00439-004-1166-y . 22266373 .
  53. Kusari J, Verma US, Buse JB, Henry RR, Olefsky JM . Analysis of the gene sequences of the insulin receptor and the insulin-sensitive glucose transporter (GLUT-4) in patients with common-type non-insulin-dependent diabetes mellitus . The Journal of Clinical Investigation . 88 . 4 . 1323–30 . October 1991 . 1918382 . 295602 . 10.1172/JCI115437 .
  54. Newton JM, Cohen-Barak O, Hagiwara N, Gardner JM, Davisson MT, King RA, Brilliant MH . Mutations in the human orthologue of the mouse underwhite gene (uw) underlie a new form of oculocutaneous albinism, OCA4 . American Journal of Human Genetics . 69 . 5 . 981–8 . November 2001 . 11574907 . 1274374 . 10.1086/324340 . Muriel Davisson .
  55. Seifert W, Kühnisch J, Tüysüz B, Specker C, Brouwers A, Horn D . Mutations in the prostaglandin transporter encoding gene SLCO2A1 cause primary hypertrophic osteoarthropathy and isolated digital clubbing . Human Mutation . 33 . 4 . 660–4 . April 2012 . 22331663 . 10.1002/humu.22042 . 24703466 .
  56. Tokuhiro S, Yamada R, Chang X, Suzuki A, Kochi Y, Sawada T, Suzuki M, Nagasaki M, Ohtsuki M, Ono M, Furukawa H, Nagashima M, Yoshino S, Mabuchi A, Sekine A, Saito S, Takahashi A, Tsunoda T, Nakamura Y, Yamamoto K . An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis . Nature Genetics . 35 . 4 . 341–8 . December 2003 . 14608356 . 10.1038/ng1267 . 21564858 .
  57. van de Steeg E, Stránecký V, Hartmannová H, Nosková L, Hřebíček M, Wagenaar E, van Esch A, de Waart DR, Oude Elferink RP, Kenworthy KE, Sticová E, al-Edreesi M, Knisely AS, Kmoch S, Jirsa M, Schinkel AH . Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver . The Journal of Clinical Investigation . 122 . 2 . 519–28 . February 2012 . 22232210 . 10.1172/JCI59526 . 3266790.
  58. Sakamoto O, Ogawa E, Ohura T, Igarashi Y, Matsubara Y, Narisawa K, Iinuma K . Mutation analysis of the GLUT2 gene in patients with Fanconi-Bickel syndrome . Pediatric Research . 48 . 5 . 586–9 . November 2000 . 11044475 . 10.1203/00006450-200011000-00005 . free .
  59. Wang D, Kranz-Eble P, De Vivo DC . Mutational analysis of GLUT1 (SLC2A1) in Glut-1 deficiency syndrome . Human Mutation . 16 . 3 . 224–31 . September 2000 . 10980529 . 10.1002/1098-1004(200009)16:3<224::AID-HUMU5>3.0.CO;2-P . free .
  60. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID . Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption . Cell . 127 . 5 . 917–28 . December 2006 . 17129779 . 10.1016/j.cell.2006.09.041 . 1918658 . free .
  61. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B, Sivakumaran TA, Giros B, El Mestikawy S, Moser T, Smith RJ, Lesperance MM, Puel JL . Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice . American Journal of Human Genetics . 83 . 2 . 278–92 . August 2008 . 18674745 . 2495073 . 10.1016/j.ajhg.2008.07.008 .
  62. Perland E, Fredriksson R . Classification Systems of Secondary Active Transporters . Trends in Pharmacological Sciences . 38 . 3 . 305–315 . March 2017 . 27939446 . 10.1016/j.tips.2016.11.008 .
  63. Hediger MA, Clémençon B, Burrier RE, Bruford EA . The ABCs of membrane transporters in health and disease (SLC series): introduction . Molecular Aspects of Medicine . 34 . 2–3 . 95–107 . 2017-06-01 . 23506860 . 3853582 . 10.1016/j.mam.2012.12.009 .
  64. Perland E, Lekholm E, Eriksson MM, Bagchi S, Arapi V, Fredriksson R . The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis . PLOS ONE . 11 . 6 . e0156912 . 2016-01-01 . 27272503 . 4896477 . 10.1371/journal.pone.0156912 . 2016PLoSO..1156912P . free .
  65. Sreedharan S, Stephansson O, Schiöth HB, Fredriksson R . Long evolutionary conservation and considerable tissue specificity of several atypical solute carrier transporters . Gene . 478 . 1–2 . 11–8 . June 2011 . 21044875 . 10.1016/j.gene.2010.10.011 .
  66. Perland E, Hellsten SV, Lekholm E, Eriksson MM, Arapi V, Fredriksson R . The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake . Journal of Molecular Neuroscience . 61 . 2 . 199–214 . February 2017 . 27981419 . 10.1007/s12031-016-0867-8 . 5321710.
  67. Gray KA, Seal RL, Tweedie S, Wright MW, Bruford EA . A review of the new HGNC gene family resource . Human Genomics . 10 . 6 . February 2016 . 26842383 . 4739092 . 10.1186/s40246-016-0062-6 . free .
  68. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, Wenk MR, Goh EL, Silver DL . Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid . Nature . 509 . 7501 . 503–6 . May 2014 . 24828044 . 10.1038/nature13241 . 2014Natur.509..503N . 4462512 .
  69. Perland E, Hellsten SV, Schweizer N, Arapi V, Rezayee F, Bushra M, Fredriksson R . Structural prediction of two novel human atypical SLC transporters, MFSD4A and MFSD9, and their neuroanatomical distribution in mice . PLOS ONE . 12 . 10 . e0186325 . 2017 . 29049335 . 5648162 . 10.1371/journal.pone.0186325 . 2017PLoSO..1286325P . free .
  70. Horiba N, Masuda S, Ohnishi C, Takeuchi D, Okuda M, Inui K . Na(+)-dependent fructose transport via rNaGLT1 in rat kidney . FEBS Letters . 546 . 2–3 . 276–80 . July 2003 . 12832054 . 10.1016/s0014-5793(03)00600-8. 27361236 . free .
  71. Damme M, Brandenstein L, Fehr S, Jankowiak W, Bartsch U, Schweizer M, Hermans-Borgmeyer I, Storch S . Gene disruption of Mfsd8 in mice provides the first animal model for CLN7 disease . Neurobiology of Disease . 65 . 12–24 . May 2014 . 24423645 . 10.1016/j.nbd.2014.01.003 . 207068059 .
  72. Ushijima H, Hiasa M, Namba T, Hwang HJ, Hoshino T, Mima S, Tsuchiya T, Moriyama Y, Mizushima T . Expression and function of TETRAN, a new type of membrane transporter . Biochemical and Biophysical Research Communications . 374 . 2 . 325–30 . September 2008 . 18638446 . 10.1016/j.bbrc.2008.07.034 .
  73. Lekholm E, Perland E, Eriksson MM, Hellsten SV, Lindberg FA, Rostami J, Fredriksson R . Putative Membrane-Bound Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability . Frontiers in Molecular Neuroscience . 10 . 11 . 2017-01-01 . 28179877 . 10.3389/fnmol.2017.00011 . 5263138. free .
  74. Ceder MM, Lekholm E, Hellsten SV, Perland E, Fredriksson R . The Neuronal and Peripheral Expressed Membrane-Bound UNC93A Respond to Nutrient Availability in Mice . en . Frontiers in Molecular Neuroscience . 10 . 351 . 2017 . 29163028 . 5671512 . 10.3389/fnmol.2017.00351 . free .
  75. Campbell CL, Lehmann CJ, Gill SS, Dunn WA, James AA, Foy BD . A role for endosomal proteins in alphavirus dissemination in mosquitoes . Insect Molecular Biology . 20 . 4 . 429–36 . August 2011 . 21496127 . 3138809 . 10.1111/j.1365-2583.2011.01078.x .
  76. Ceder MM, Aggarwal T, Hosseini K, Maturi V, Patil S, Perland E, Williams MJ, Fredriksson R . 6 . CG4928 Is Vital for Renal Function in Fruit Flies and Membrane Potential in Cells: A First In-Depth Characterization of the Putative Solute Carrier UNC93A . Frontiers in Cell and Developmental Biology . 8 . 580291 . 2020 . 33163493 . 7591606 . 10.3389/fcell.2020.580291 . free .
  77. Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P, Crozat K, Mudd S, Mann N, Sovath S, Goode J, Shamel L, Herskovits AA, Portnoy DA, Cooke M, Tarantino LM, Wiltshire T, Steinberg BE, Grinstein S, Beutler B . The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9 . Nature Immunology . 7 . 2 . 156–64 . February 2006 . 16415873 . 10.1038/ni1297 . 33401155 .
  78. Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D . HSpin1, a transmembrane protein interacting with Bcl-2/Bcl-xL, induces a caspase-independent autophagic cell death . Cell Death and Differentiation . 10 . 7 . 798–807 . July 2003 . 12815463 . 10.1038/sj.cdd.4401246 . free .
  79. Storch S, Pohl S, Quitsch A, Falley K, Braulke T . C-terminal prenylation of the CLN3 membrane glycoprotein is required for efficient endosomal sorting to lysosomes . Traffic . 8 . 4 . 431–44 . April 2007 . 17286803 . 10.1111/j.1600-0854.2007.00537.x . 31146043 . free .
  80. Perland E, Bagchi S, Klaesson A, Fredriksson R . Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type: evolutionary conservation, predicted structure and neuronal co-expression . Open Biology . 7 . 9 . 170142 . September 2017 . 28878041 . 5627054 . 10.1098/rsob.170142 .