Macro domain explained
Symbol: | Macro |
Macro |
Pfam: | PF01661 |
Pfam Clan: | CL0223 |
Interpro: | IPR002589 |
Scop: | 1vhu |
Cdd: | cd02749 |
In molecular biology, the Macro domain (often also written macrodomain) or A1pp domain is an ancient, evolutionary conserved structural module found in all kingdoms of life as well as some viruses.[1] Macro domains are modules of about 180 amino acids that can bind ADP-ribose, an NAD metabolite, or related ligands. Binding to ADP-ribose can be either covalent or non-covalent:[2] in certain cases it is believed to bind non-covalently,[3] while in other cases (such as Aprataxin) it appears to bind both non-covalently through a zinc finger motif, and covalently through a separate region of the protein.[4]
Function
The domain was described originally in association with the ADP-ribose 1-phosphate (Appr-1-P)-processing activity (A1pp) of the yeast YBR022W protein and called A1pp.[5] However, the domain has been renamed Macro as it is the C-terminal domain of mammalian core histone macro-H2A.[6] [7] Macro domain proteins can be found in eukaryotes, in (mostly pathogenic) bacteria, in archaea and in ssRNA viruses, such as coronaviruses, Rubella and Hepatitis E viruses. In vertebrates the domain occurs in e.g. histone macroH2A, predicted poly-ADP-ribose polymerases (PARPs) and B aggressive lymphoma (BAL) protein. Zinc-containing macro domains (Zn-Macros) are primarily encountered in pathogenic microorganisms and have structurally distinct features from other macro domains, which include their function being strictly dependent on a catalytic zinc within the active site.[8] [9]
ADP-ribosylation of proteins is an important post-translational modification that occurs in a variety of biological processes, including DNA repair, regulation of transcription, chromatin biology, maintenance of genomic stability, telomere dynamics,[10] cell differentiation and proliferation,[11] necrosis and apoptosis,[12] and long-term memory formation.[13] The Macro domain recognises the ADP-ribose nucleotide and in some cases poly-ADP-ribose, and is thus a high-affinity ADP-ribose-binding module found in a number of otherwise unrelated proteins.[14]
ADP-ribosylation of DNA is relatively uncommon and has only been described for a small number of toxins that include pierisin,[15] scabin[16] and DarT.[17] [18] The Macro domain from the antitoxin DarG of the toxin-antitoxin system DarTG, both binds and removes the ADP-ribose modification added to DNA by the toxin DarT. The Macro domain from human, macroH2A1.1, binds an NAD metabolite O-acetyl-ADP-ribose.[19]
Class | Subclass | Species | Activity |
---|
MacroH2A-like | | e | ADP-ribose binding |
---|
MacroD-type | ‘classic’ | a, b, e, v | ADP-ribosyl bond hydrolysis |
---|
Zn-dependent | b, e | ADP-ribosyl bond hydrolysis |
GDAP2-like | e | ADP-ribose binding |
ALC1-like | | b, e | ADP-ribose binding or ADP-ribosyl bond hydrolysis |
---|
PARG-like | PARG_cat | e | ADP-ribosyl bond hydrolysis |
---|
mPARG (DUF2263) | b, e, v | ADP-ribosyl bond hydrolysis |
Macro2-type | | e, v | ADP-ribosyl bond hydrolysis |
---|
SUD-M-like | | v | RNA binding |
---|
DUF2362 | | e | unknown |
---|
a, Archaea; b, Bacteria; e, Eukarya; v, Virus | |
Structure
The 3D structure of the Macro domain describes a mixed alpha/beta fold of a mixed beta sheet sandwiched between four helices with the ligand-binding pocket lies within the fold.[14] Several Macro domain-only domains are shorter than the structure of AF1521 and lack either the first strand or the C-terminal helix 5. Well conserved residues form a hydrophobic cleft and cluster around the AF1521-ADP-ribose binding site.[7] [14] [19] [20]
See also
Notes and References
- Rack . Johannes Gregor Matthias . Perina . Dragutin . Ahel . Ivan . 2016-06-02 . Macrodomains: Structure, Function, Evolution, and Catalytic Activities . Annual Review of Biochemistry . 85 . 1 . 431–454 . 10.1146/annurev-biochem-060815-014935 . 26844395 . 0066-4154.
- Hassa PO, Haenni SS, Elser M, Hottiger MO . Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? . Microbiol. Mol. Biol. Rev. . 70 . 3 . 789–829 . September 2006 . 16959969 . 1594587 . 10.1128/MMBR.00040-05 .
- Neuvonen M, Ahola T . Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites . J. Mol. Biol. . 385 . 1 . 212–25 . January 2009 . 18983849 . 10.1016/j.jmb.2008.10.045 . 7094737 .
- Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC . Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins . Nature . 451 . 7174 . 81–5 . January 2008 . 18172500 . 10.1038/nature06420 . 2008Natur.451...81A . 4417693 .
- Martzen MR, McCraith SM, Spinelli SL, Torres FM, Fields S, Grayhack EJ, Phizicky EM . A biochemical genomics approach for identifying genes by the activity of their products . Science . 286 . 5442 . 1153–5 . November 1999 . 10550052 . 10.1126/science.286.5442.1153.
- Aravind L . The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation . Trends Biochem. Sci. . 26 . 5 . 273–5 . May 2001 . 11343911 . 10.1016/s0968-0004(01)01787-x.
- Allen MD, Buckle AM, Cordell SC, Löwe J, Bycroft M . The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A . J. Mol. Biol. . 330 . 3 . 503–11 . July 2003 . 12842467 . 10.1016/S0022-2836(03)00473-X.
- Rack . Johannes Gregor Matthias . Morra . Rosa . Barkauskaite . Eva . Kraehenbuehl . Rolf . Ariza . Antonio . Qu . Yue . Ortmayer . Mary . Leidecker . Orsolya . Cameron . David R. . Matic . Ivan . Peleg . Anton Y. . Leys . David . Traven . Ana . Ahel . Ivan . July 2015 . Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens . Molecular Cell . 59 . 2 . 309–320 . 10.1016/j.molcel.2015.06.013. 26166706 . 4518038 .
- Ariza . Antonio . Liu . Qiang . Cowieson . Nathan . Ahel . Ivan . Filippov . Dmitri V. . Rack . Johannes Gregor Matthias . September 2024 . Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains . Journal of Biological Chemistry . 107770 . 10.1016/j.jbc.2024.107770. free . 39270823 . 11490716 .
- Tennen RI, Chua KF . Chromatin regulation and genome maintenance by mammalian SIRT6 . . 36 . 1 . 39–46 . January 2011 . 20729089 . 10.1016/j.tibs.2010.07.009 . 2991557.
- Ji Y, Tulin AV . The roles of PARP1 in gene control and cell differentiation . . 20 . 5 . 512–8 . October 2010 . 20591646 . 10.1016/j.gde.2010.06.001 . 2942995.
- 2011. The macro domain protein family: Structure, functions, and their potential therapeutic implications. Mutation Research. 727. 3. 86–103. 10.1016/j.mrrev.2011.03.001. 21421074. Han W, Li X, Fu X. 7110529. 2011MRRMR.727...86H .
- July 2006. Poly(ADP-ribose): novel functions for an old molecule. Nature Reviews Molecular Cell Biology. 7. 7. 517–28. 10.1038/nrm1963. 16829982. Schreiber V, Dantzer F, Ame JC, de Murcia G. 22030625.
- Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG . The macro domain is an ADP-ribose binding module . EMBO J. . 24 . 11 . 1911–20 . June 2005 . 15902274 . 1142602 . 10.1038/sj.emboj.7600664 .
- Takamura-Enya. Takeji. Watanabe. Masahiko. Totsuka. Yukari. Kanazawa. Takashi. Matsushima-Hibiya. Yuko. Koyama. Kotaro. Sugimura. Takashi. Wakabayashi. Keiji. 2001-10-23. Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly. Proceedings of the National Academy of Sciences. 98. 22. 12414–12419. 10.1073/pnas.221444598. 0027-8424. 60068. 11592983. 2001PNAS...9812414T. free.
- Lyons. Bronwyn. Ravulapalli. Ravikiran. Lanoue. Jason. Lugo. Miguel R.. Dutta. Debajyoti. Carlin. Stephanie. Merrill. A. Rod. 2016-05-20. Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies. The Journal of Biological Chemistry. 291. 21. 11198–11215. 10.1074/jbc.M115.707653. 1083-351X. 4900268. 27002155. free.
- Jankevicius. Gytis. Ariza. Antonio. Ahel. Marijan. Ahel. Ivan. The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA. Molecular Cell. 64. 6. 1109–1116. 10.1016/j.molcel.2016.11.014. 5179494. 27939941. 2016.
- Schuller. Marion. Butler. Rachel E.. Ariza. Antonio. Tromans-Coia. Callum. Jankevicius. Gytis. Claridge. Tim D. W.. Kendall. Sharon L.. Goh. Shan. Stewart. Graham R.. Ahel. Ivan. 2021-08-18. Molecular basis for DarT ADP-ribosylation of a DNA base. Nature. 596. 7873. 597–602. 10.1038/s41586-021-03825-4. 34408320. 2021Natur.596..597S . 1476-4687. 2299/25013. 237214909 . free.
- Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG . Splicing regulates NAD metabolite binding to histone macroH2A . Nat. Struct. Mol. Biol. . 12 . 7 . 624–5 . July 2005 . 15965484 . 10.1038/nsmb956 . 29456363 .
- Egloff MP, Malet H, Putics A, Heinonen M, Dutartre H, Frangeul A, Gruez A, Campanacci V, Cambillau C, Ziebuhr J, Ahola T, Canard B . Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains . J. Virol. . 80 . 17 . 8493–502 . September 2006 . 16912299 . 1563857 . 10.1128/JVI.00713-06 .