Macaulay's method (the double integration method) is a technique used in structural analysis to determine the deflection of Euler-Bernoulli beams. Use of Macaulay's technique is very convenient for cases of discontinuous and/or discrete loading. Typically partial uniformly distributed loads (u.d.l.) and uniformly varying loads (u.v.l.) over the span and a number of concentrated loads are conveniently handled using this technique.
The first English language description of the method was by Macaulay.[1] The actual approach appears to have been developed by Clebsch in 1862.[2] Macaulay's method has been generalized for Euler-Bernoulli beams with axial compression,[3] to Timoshenko beams,[4] to elastic foundations,[5] and to problems in which the bending and shear stiffness changes discontinuously in a beam.[6]
The starting point is the relation from Euler-Bernoulli beam theory
\pmEI\dfrac{d2w}{dx2}=M
w
M
w
M
x
M
M=M1(x)+P1\langlex-a1\rangle+P2\langlex-a2\rangle+P3\langlex-a3\rangle+...
Pi\langlex-ai\rangle
\langlex-ai\rangle
\langlex-ai\rangle=\begin{cases}0&if~x<ai\ x-ai&if~x>ai\end{cases}
P(x-a)
\intP(x-a)~dx=P\left[\cfrac{x2}{2}-ax\right]+C
\intP\langlex-a\rangle~dx=P\cfrac{\langlex-a\rangle2}{2}+Cm
Cm
An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find
M
RA+RC=P,~~LRC=Pa
RA=Pb/L
0<x<a
M=RAx=Pbx/L
EI\dfrac{d2w}{dx2}=\dfrac{Pbx}{L}
0<x<a
\begin{align} EI\dfrac{dw}{dx}&=\dfrac{Pbx2}{2L}+C1&& (i)\\ EIw&=\dfrac{Pbx3}{6L}+C1x+C2&& (ii) \end{align}
x=a-
\begin{align} EI\dfrac{dw}{dx}(a-)&=\dfrac{Pba2}{2L}+C1&& (iii)\\ EIw(a-)&=\dfrac{Pba3}{6L}+C1a+C2&& (iv) \end{align}
a<x<L
M=RAx-P(x-a)=Pbx/L-P(x-a)
M=
Pbx | |
L |
-P\langlex-a\rangle
Therefore, the Euler-Bernoulli beam equation for this region has the form
EI\dfrac{d2w}{dx2}=\dfrac{Pbx}{L}-P\langlex-a\rangle
a<x<L
\begin{align} EI\dfrac{dw}{dx}&=\dfrac{Pbx2}{2L}-P\cfrac{\langlex-a\rangle2}{2}+D1&& (v)\\ EIw&=\dfrac{Pbx3}{6L}-P\cfrac{\langlex-a\rangle3}{6}+D1x+D2&& (vi) \end{align}
x=a+
\begin{align} EI\dfrac{dw}{dx}(a+)&=\dfrac{Pba2}{2L}+D1&& (vii)\\ EIw(a+)&=\dfrac{Pba3}{6L}+D1a+D2&& (viii) \end{align}
Comparing equations (iii) & (vii) and (iv) & (viii) we notice that due to continuity at point B,
C1=D1
C2=D2
The above argument holds true for any number/type of discontinuities in the equations for curvature, provided that in each case the equation retains the term for the subsequent region in the form
\langlex-a\ranglen,\langlex-b\ranglen,\langlex-c\ranglen
Reverting to the problem, we have
EI\dfrac{d2w}{dx2}=\dfrac{Pbx}{L}-P\langlex-a\rangle
x<a
x>a
\begin{align} EI\dfrac{dw}{dx}&=\left[\dfrac{Pbx2}{2L}+C1\right]-\cfrac{P\langlex-a\rangle2}{2}\\ EIw&=\left[\dfrac{Pbx3}{6L}+C1x+C2\right]-\cfrac{P\langlex-a\rangle3}{6}\end{align}
x<a
x>a
x<a
As
w=0
x=0
C2=0
w=0
x=L
\left[\dfrac{PbL2}{6}+C1L\right]-\cfrac{P(L-a)3}{6}=0
C1=-\cfrac{Pb}{6L}(L2-b2)~.
\begin{align} EI\dfrac{dw}{dx}&=\left[\dfrac{Pbx2}{2L}-\cfrac{Pb}{6L}(L2-b2)\right]-\cfrac{P\langlex-a\rangle2}{2}\\ EIw&=\left[\dfrac{Pbx3}{6L}-\cfrac{Pbx}{6L}(L2-b2)\right]-\cfrac{P\langlex-a\rangle3}{6}\end{align}
For
w
dw/dx=0
x<a
\dfrac{Pbx2}{2L}-\cfrac{Pb}{6L}(L2-b2)=0
x=\pm\cfrac{(L2-b2)1/2
x<0
EIwmax=\cfrac{1}{3}\left[\dfrac{Pb(L2-b2)3/2
wmax=-\dfrac{Pb(L2-b2)3/2
At
x=a
EIwB=\dfrac{Pba3}{6L}-\cfrac{Pba}{6L}(L2-b2)=
Pba | |
6L |
(a2+b2-L2)
wB=-\cfrac{Pa2b2}{3LEI}
It is instructive to examine the ratio of
wmax/w(L/2)
x=L/2
EIw(L/2)=\dfrac{PbL2}{48}-\cfrac{Pb}{12}(L2-b2)=-
Pb | \left[ | |
12 |
3L2 | |
4 |
-b2\right]
wmax | |
w(L/2) |
=
4(L2-b2)3/2 | L\left[ | |
3\sqrt{3 |
3L2 | |
4 |
-b2\right]}=
| \left[ | |||||
3\sqrt{3 |
3 | |
4 |
-
b2 | |
L2 |
\right]} =
16(1-k2)3/2 | |
3\sqrt{3 |
\left(3-4k2\right)}
k=B/L
a<b;0<k<0.5
When
a=b=L/2
w
x=\cfrac{[L2-(L/2)2]1/2
wmax=-\dfrac{P(L/2)b[L2-(L/2)2]3/2