In physics the magneto-optic Kerr effect (MOKE) or the surface magneto-optic Kerr effect (SMOKE) is one of the magneto-optic effects. It describes the changes to light reflected from a magnetized surface. It is used in materials science research in devices such as the Kerr microscope, to investigate the magnetization structure of materials.
\varepsilon
vp=
1 | |
\sqrt{\varepsilon\mu |
where
vp
\varepsilon
\mu
This effect is often quantified in terms of its Kerr angle and its Kerr ellipticity.The Kerr angle
\thetak
\epsilonk
ηk
MOKE can be further categorized by the direction of the magnetization vector with respect to the reflecting surface and the plane of incidence.
When the magnetization vector is perpendicular to the reflection surface and parallel to the plane of incidence, the effect is called the polar Kerr effect. To simplify the analysis, and because the other two configurations have vanishing Kerr rotation at normal incidence, near normal incidence is usually employed when doing experiments in the polar geometry.
In the longitudinal effect, the magnetization vector is parallel to both the reflection surface and the plane of incidence. The longitudinal setup involves light reflected at an angle from the reflection surface and not normal to it, as is used for polar MOKE. In the same manner, linearly polarized light incident on the surface becomes elliptically polarized, with the change in polarization directly proportional to the component of magnetization that is parallel to the reflection surface and parallel to the plane of incidence. This elliptically polarized light to first-order has two perpendicular
E
r
k
When the magnetization is perpendicular to the plane of incidence and parallel to the surface it is said to be in the transverse configuration. In this case, the incident light is also not normal to the reflection surface but instead of measuring the polarity of the light after reflection, the reflectivity
r
|r+k|2
|r-k|2
In addition to the polar, longitudinal and transverse Kerr effect which depend linearly on the respective magnetization components, there are also higher order quadratic effects,[2] for which the Kerr angle depends on product terms involving the polar, longitudinal and transverse magnetization components. Those effectsare referred to as Voigt effect or quadratic Kerr effect. Quadratic magneto-optic Kerr effect (QMOKE) is found strong in Heusler alloys such as Co2FeSi and Co2MnGe[3] [4]
A Kerr microscope relies on the MOKE in order to image differences in the magnetization on a surface of magnetic material. In a Kerr microscope, the illuminating light is first passed through a polarizer filter, then reflects from the sample and passes through an analyzer polarizing filter, before going through a regular optical microscope. Because the different MOKE geometries require different polarized light, the polarizer should have the option to change the polarization of the incident light (circular, linear, and elliptical). When the polarized light is reflected off the sample material, a change in any combination of the following may occur: Kerr rotation, Kerr ellipticity, or polarized amplitude. The changes in polarization are converted by the analyzer into changes in light intensity, which are visible. A computer system is often used to create an image of the magnetic field on the surface from these changes in polarization.
Magneto Optical (MO) Drives were introduced in 1985. MO discs were written using a laser and an electromagnet. The laser would heat the platter above its Curie temperature at which point the electromagnet would orient that bit as a 1 or 0. To read, the laser is operated at a lower intensity, and emits polarized light. Reflected light is analyzed showing a noticeable difference between a 0 or 1.
The magneto-optic Kerr effect was discovered in 1877 by John Kerr.[5] [6]