Envisat | |
Mission Type: | Earth observation |
Operator: | ESA |
Cospar Id: | 2002-009A |
Satcat: | 27386 |
Mission Duration: | Planned: 5 years Final: |
Manufacturer: | Astrium |
Launch Mass: | 8211kg (18,102lb) |
Dimensions: | 26xx |
Power: | 6,500 watts |
Launch Date: | UTC |
Launch Rocket: | Ariane 5G V-145 |
Launch Site: | Kourou ELA-3 |
Launch Contractor: | Arianespace |
Last Contact: | (spacecraft failure) |
Disposal Type: | None |
Decay Date: | ~150 years |
Orbit Epoch: | 15 December 2013, 03:07:00 UTC[1] |
Orbit Reference: | Geocentric |
Orbit Regime: | Polar low Earth |
Orbit Semimajor: | 7144.9km (4,439.6miles) |
Orbit Periapsis: | 772km (480miles) |
Orbit Apoapsis: | 774km (481miles) |
Orbit Inclination: | 98.40 degrees |
Orbit Repeat: | 35 days |
Orbit Period: | 100.16 minutes |
Orbit Eccentricity: | 0.00042 |
Apsis: | gee |
Envisat ("Environmental Satellite") is a large Earth-observing satellite which has been inactive since 2012. It is still in orbit and considered space debris. Operated by the European Space Agency (ESA), it was the world's largest civilian Earth observation satellite.[2]
It was launched on 1 March 2002 aboard an Ariane 5 from the Guyana Space Centre in Kourou, French Guiana, into a Sun synchronous polar orbit at an altitude of 790 ± 10 km. It orbits the Earth in about 101 minutes, with a repeat cycle of 35 days. After losing contact with the satellite on 8 April 2012, ESA formally announced the end of Envisat's mission on 9 May 2012.[3]
Envisat cost 2.3 billion Euro (including 300 million Euro for 5 years of operations) to develop and launch.[4] The mission has been replaced by the Sentinel series of satellites. The first of these, Sentinel 1, has taken over the radar duties of Envisat since its launch in 2014.
Envisat was launched as an Earth observation satellite. Its objective was to support the continuity of European Remote-Sensing Satellite missions, providing additional observations to improve environmental studies.
To accomplish the global and regional objectives of the mission, numerous scientific disciplines used the data acquired from the sensors on the satellite to study atmospheric chemistry, ozone depletion, biological oceanography, ocean temperature and colour, wind waves, hydrology (humidity, floods), agriculture and arboriculture, natural hazards, digital elevation modelling (using interferometry), monitoring of maritime traffic, atmospheric dispersion modelling (pollution), cartography and snow and ice.
Envisat carries an array of nine Earth-observation instruments that gathered information about the Earth (land, water, ice, and atmosphere) using a variety of measurement principles. A tenth instrument, DORIS, provided guidance and control. Several of the instruments were advanced versions of instruments that were flown on the earlier ERS-1 and ERS 2 missions and other satellites.
MWR (Microwave Radiometer) was designed for measuring water vapour in the atmosphere.
See main article: AATSR. AATSR (Advanced Along Track Scanning Radiometer) can measure the sea surface temperature in the visible and infrared spectra. It is the successor of ATSR1 and ATSR2, payloads of ERS 1 and ERS 2. AATSR can measure Earth's surface temperature to a precision of 0.3K-change, for climate research. Among the secondary objectives of AATSR is the observation of environmental parameters such as water content, biomass, and vegetal health and growth.
MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is a Fourier transforming infrared spectrometer which provides pressure and temperature profiles, and profiles of trace gases nitrogen dioxide, nitrous oxide, methane, nitric acid, ozone, and water in the stratosphere. The instrument functions with high spectral resolution in an extended spectral band, which allows coverage across the Earth in all seasons and at equal quality night and day. MIPAS has a vertical resolution of 3to depending on altitude (the larger at the level of the upper stratosphere).
See main article: MERIS.
MERIS (MEdium Resolution Imaging Spectrometer) measures the reflectance of the Earth (surface and atmosphere) in the solar spectral range (390 to 1040 nm) and transmits 15 spectral bands back to the ground segment. MERIS was built at the Cannes Mandelieu Space Center.
See main article: SCIAMACHY.
SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) compares light coming from the sun to light reflected by the Earth, which provides information on the atmosphere through which the Earth-reflected light has passed.
SCIAMACHY is an image spectrometer with the principal objective of mapping the concentration of trace gases and aerosols in the troposphere and stratosphere. Rays of sunlight that are reflected transmitted, backscattered and reflected by the atmosphere are captured at a high spectral resolution (0.2 to 0.5 nm) for wavelengths between 240 and 1700 nm, and in certain spectra between 2,000 and 2,400 nm. Its high spectral resolution over a wide range of wavelengths can detect many trace gases even in tiny concentrations. The wavelengths captured also allow effective detection of aerosols and clouds.SCIAMACHY uses 3 different targeting modes: to the nadir (against the sun), to the limbus (through the atmospheric corona), and during solar or lunar eclipses. SCIAMACHY was built by Netherlands and Germany at TNO/TPD, SRON and Airbus Defence and Space Netherlands.[7]
RA-2 (Radar Altimeter 2) is a dual-frequency Nadir pointing Radar operating in the Ku band and S bands, it is used to define ocean topography, map/monitor sea ice and measure land heights.
Mean sea level measurements from Envisat are continuously graphed at the Centre National d'Etudes Spatiales web site, on the Aviso page.
ASAR (Advanced Synthetic Aperture Radar) operates in the C band in a wide variety of modes. It can detect changes in surface heights with sub-millimeter precision. It served as a data link for ERS 1 and ERS 2, providing numerous functions such as observations of different polarities of light or combining different polarities, angles of incidence and spatial resolutions.
Mode | Id | Polarisation | Incidence | Resolution | Swath | |
---|---|---|---|---|---|---|
Alternating polarisation | AP | HH/VV, HH/HV, VV/VH | 15–45° | 30–150 m | 58–110 km | |
Image | IM | HH, VV | 15–45° | 30–150 m | 58–110 km | |
Wave | WV | HH, VV | 400 m | 5 km × 5 km | ||
Suivi global (ScanSAR) | GM | HH, VV | 1000 m | 405 km | ||
Wide Swath (ScanSAR) | WS | HH, VV | 150 m | 405 km |
These different types of raw data can be given several levels of treatment (suffixed to the ID of the acquisition mode: IMP, APS, and so on):
Data capture in WV mode is unusual in that they constitute a series of 5 km × 5 km spaced at 100 km.
See main article: DORIS (geodesy).
DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) determines the satellite's orbit to within 10abbr=onNaNabbr=on.
See main article: GOMOS.
GOMOS (Global Ozone Monitoring by Occultation of Stars) looks at stars as they descend through the Earth's atmosphere and change colour, allowing measurement of gases such as ozone, including their vertical distribution.
GOMOS uses the principle of occultation. Its sensors detect light from a star traversing the Earth's atmosphere and measures the depletion of that light by trace gases nitrogen dioxide, nitrogen trioxide,,), ozone and aerosols present between about 20to altitude. It has a resolution of 3km (02miles).
ESA announced on 12 April 2012 that they lost contact with Envisat on Sunday, 8 April 2012, after 10 years of service, exceeding the initially planned life span by 5 years. The spacecraft was still in a stable orbit, but attempts to contact it were unsuccessful.[8] [9] Ground-based radar and the French Pleiades Earth probe were used to image the silent Envisat and look for damage.[10] ESA formally announced the end of Envisat's mission on 9 May 2012.
Envisat was launched in 2002 and it operated five years beyond its planned mission lifetime, delivering over a petabyte of data.[3] ESA was expecting to turn off the spacecraft in 2014.[11]
Envisat poses a hazard because of the risk of collisions with space debris. Given its orbit and its area-to-mass ratio, it will take about 150 years for the satellite to be gradually pulled into the Earth's atmosphere.[12] Envisat is currently orbiting in an environment where two catalogued space debris objects can be expected to pass within about 200m (700feet) of it every year, which would likely trigger the need for a manoeuvre to avoid a possible collision.[13] A collision between a satellite the size of Envisat and an object as small as 10 kg could produce a very large cloud of debris, initiating a self-sustaining chain-reaction of collisions and fragmentation with production of new debris, a phenomenon known as the Kessler Syndrome.[13]
Envisat was a candidate for a mission to remove it from orbit, called e.Deorbit. The spacecraft sent to bring down Envisat would itself need to have a mass of approximately 1.6 tonnes.[14]