In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.
The conjunctive normal form formula
(x0\lorx1)\land(x0\lorlnotx1)\land(lnotx0\lorx1)\land(lnotx0\lorlnotx1)
The MAX-SAT problem is OptP-complete,[1] and thus NP-hard, since its solution easily leads to the solution of the boolean satisfiability problem, which is NP-complete.
It is also difficult to find an approximate solution of the problem, that satisfies a number of clauses within a guaranteed approximation ratio of the optimal solution. More precisely, the problem is APX-complete, and thus does not admit a polynomial-time approximation scheme unless P = NP.[2] [3] [4]
More generally, one can define a weighted version of MAX-SAT as follows: given a conjunctive normal form formula with non-negative weights assigned to each clause, find truth values for its variables that maximize the combined weight of the satisfied clauses. The MAX-SAT problem is an instance of weighted MAX-SAT where all weights are 1.[5] [6]
Randomly assigning each variable to be true with probability 1/2 gives an expected 2-approximation. More precisely, if each clause has at least variables, then this yields a (1 − 2−)-approximation. This algorithm can be derandomized using the method of conditional probabilities.
MAX-SAT can also be expressed using an integer linear program (ILP). Fix a conjunctive normal form formula with variables 1, 2, ..., n, and let denote the clauses of . For each clause in, let + and − denote the sets of variables which are not negated in, and those that are negated in, respectively. The variables of the ILP will correspond to the variables of the formula, whereas the variables will correspond to the clauses. The ILP is as follows:
maximize | \sumcwc ⋅ zc | (maximize the weight of the satisfied clauses) | |||||||||||||||||||||||||
subject to | zc\leq\sum
yx+\sum
(1-yx) | for all c\inC | (clause is true iff it has a true, non-negated variable or a false, negated one) | ||||||||||||||||||||||||
zc\in\{0,1\} | for all c\inC | (every clause is either satisfied or not) | |||||||||||||||||||||||||
yx\in\{0,1\} | for all x\inF | (every variable is either true or false) |
The above program can be relaxed to the following linear program :
maximize | \sumcwc ⋅ zc | (maximize the weight of the satisfied clauses) | |||||||||||||||||||||||||
subject to | zc\leq\sum
yx+\sum
(1-yx) | for all c\inC | (clause is true iff it has a true, non-negated variable or a false, negated one) | ||||||||||||||||||||||||
0\leqzc\leq1 | for all c\inC | ||||||||||||||||||||||||||
0\leqyx\leq1 | for all x\inF |
The following algorithm using that relaxation is an expected (1-1/e)-approximation:
This algorithm can also be derandomized using the method of conditional probabilities.
The 1/2-approximation algorithm does better when clauses are large whereas the (1-1/)-approximation does better when clauses are small. They can be combined as follows:
This is a deterministic factor (3/4)-approximation.
On the formula
where
\epsilon>0
3+\epsilon
4+\epsilon
The state-of-the-art algorithm is due to Avidor, Berkovitch and Zwick,[7] [8] and its approximation ratio is 0.7968. They also give another algorithm whose approximation ratio is conjectured to be 0.8353.
Many exact solvers for MAX-SAT have been developed during recent years, and many of them were presented in the well-known conference on the boolean satisfiability problem and related problems, the SAT Conference. In 2006 the SAT Conference hosted the first MAX-SAT evaluation comparing performance of practical solvers for MAX-SAT, as it has done in the past for the pseudo-boolean satisfiability problem and the quantified boolean formula problem.Because of its NP-hardness, large-size MAX-SAT instances cannot in general be solved exactly, and one must often resort to approximation algorithmsand heuristics[9]
There are several solvers submitted to the last Max-SAT Evaluations:
MAX-SAT is one of the optimization extensions of the boolean satisfiability problem, which is the problem of determining whether the variables of a given Boolean formula can be assigned in such a way as to make the formula evaluate to TRUE. If the clauses are restricted to have at most 2 literals, as in 2-satisfiability, we get the MAX-2SAT problem. If they are restricted to at most 3 literals per clause, as in 3-satisfiability, we get the MAX-3SAT problem.
There are many problems related to the satisfiability of conjunctive normal form Boolean formulas.