Lyapunov–Schmidt reduction explained
In mathematics, the Lyapunov–Schmidt reduction or Lyapunov–Schmidt construction is used to study solutions to nonlinear equations in the case when the implicit function theorem does not work. It permits the reduction of infinite-dimensional equations in Banach spaces to finite-dimensional equations. It is named after Aleksandr Lyapunov and Erhard Schmidt.
Problem setup
Let
be the given nonlinear equation,
and
are
Banach spaces (
is the parameter space).
is the
-map from a neighborhood of some point
to
and the equation is satisfied at this point
For the case when the linear operator
is invertible, the
implicit function theorem assures that there existsa solution
satisfying the equation
at least locally close to
.
In the opposite case, when the linear operator
is non-invertible, the Lyapunov–Schmidt reduction can be applied in the followingway.
Assumptions
One assumes that the operator
is a
Fredholm operator.
and
has finite dimension.
The range of this operator
has finite
co-dimension andis a closed subspace in
.
Without loss of generality, one can assume that
Lyapunov–Schmidt construction
Let us split
into the direct product
, where
.
Let
be the
projection operator onto
.
Consider also the direct product
.
Applying the operators
and
to the original equation, one obtains the equivalent system
Let
and
, then the first equation
can be solved with respect to
by applying the implicit function theorem to the operator
Qf(x1+x2,λ): X2 x (X1 x Λ)\toY1
(now the conditions of the implicit function theorem are fulfilled).
Thus, there exists a unique solution
satisfying
Now substituting
into the second equation, one obtains the final finite-dimensional equation
Indeed, the last equation is now finite-dimensional, since the range of
is finite-dimensional. This equation is now to be solved with respect to
, which is finite-dimensional, and parameters :
Applications
Lyapunov–Schmidt reduction has been used in economics, natural sciences, and engineering[1] often in combination with bifurcation theory, perturbation theory, and regularization.[2] LS reduction is often used to rigorously regularize partial differential equation models in chemical engineering resulting in models that are easier to simulate numerically but still retain all the parameters of the original model.[2] [3] [4]
References
Bibliography
- Louis Nirenberg, Topics in nonlinear functional analysis, New York Univ. Lecture Notes, 1974.
- Aleksandr Lyapunov, Sur les figures d’équilibre peu différents des ellipsoides d’une masse liquide homogène douée d’un mouvement de rotation, Zap. Akad. Nauk St. Petersburg (1906), 1–225.
- Aleksandr Lyapunov, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse 2 (1907), 203–474.
- Erhard Schmidt, Zur Theory der linearen und nichtlinearen Integralgleichungen, 3 Teil, Math. Annalen 65 (1908), 370–399.
Notes and References
- Book: Sidorov, Nikolai. Lyapunov-Schmidt methods in nonlinear analysis and applications. 2011. Springer. 9789048161508. 751509629.
- Gupta. Ankur. Chakraborty. Saikat. January 2009. Linear stability analysis of high- and low-dimensional models for describing mixing-limited pattern formation in homogeneous autocatalytic reactors. Chemical Engineering Journal. 145. 3. 399–411. 10.1016/j.cej.2008.08.025. 1385-8947.
- Balakotaiah. Vemuri. March 2004. Hyperbolic averaged models for describing dispersion effects in chromatographs and reactors. Korean Journal of Chemical Engineering. 21. 2. 318–328. 10.1007/bf02705415. 0256-1115.
- Gupta. Ankur. Chakraborty. Saikat. 2008-01-19. Dynamic Simulation of Mixing-Limited Pattern Formation in Homogeneous Autocatalytic Reactions. Chemical Product and Process Modeling. 3. 2. 10.2202/1934-2659.1135. 1934-2659.