Luttinger–Kohn model explained

The Luttinger–Kohn model is a flavor of the k·p perturbation theory used for calculating the structure of multiple, degenerate electronic bands in bulk and quantum well semiconductors. The method is a generalization of the single band k·p theory.

In this model, the influence of all other bands is taken into account by using Löwdin's perturbation method.[1]

Background

All bands can be subdivided into two classes:

The method concentrates on the bands in Class A, and takes into account Class B bands perturbatively.

We can write the perturbed solution,

\phi
, as a linear combination of the unperturbed eigenstates
(0)
\phi
i
:

\phi=

A,B
\sum
n

an

(0)
\phi
n

Assuming the unperturbed eigenstates are orthonormalized, the eigenequations are:

(E-Hmm)am=

A
\sum
nm

Hmnan+

B
\sum
\alpham

Hm\alphaa\alpha

,

where

Hmn=\int

(0)\dagger
\phi
m

H

(0)
\phi
n

d3r=

(0)
E
n

\deltamn

'
+H
mn
.

From this expression, we can write:

am=

A
\sum
nm
Hmn
E-Hmm

an+

B
\sum
\alpham
Hm\alpha
E-Hmm

a\alpha

,

where the first sum on the right-hand side is over the states in class A only, while the second sum is over the states on class B. Since we are interested in the coefficients

am

for m in class A, we may eliminate those in class B by an iteration procedure to obtain:

am=

A
\sum
n
A
U-\deltamnHmn
mn
E-Hmm

an

,
A
U
mn

=Hmn+

B
\sum
\alpham
Hm\alphaH\alpha
E-H\alpha\alpha

+\sum\alpha,\beta

HmH\alpha\betaH\beta
(E-H\alpha\alpha)(E-H\beta\beta)

+\ldots

Equivalently, for

an

(

n\inA

):

an=

A
\sum
n
A
(U
mn

-E\deltamn)an=0,m\inA

and

a\gamma=

A
\sum
n
A
U
\gamman
-H\gamma\delta\gamma
E-H\gamma\gamma

an=0,\gamma\inB

.

When the coefficients

an

belonging to Class A are determined, so are

a\gamma

.

Schrödinger equation and basis functions

The Hamiltonian including the spin-orbit interaction can be written as:

H=H0+

\hbar
2
4mc2
0

\bar{\sigma}\nablaV x p

,

where

\bar{\sigma}

is the Pauli spin matrix vector. Substituting into the Schrödinger equation in Bloch approximation we obtain

Hunk(r)=\left(H0+

\hbar
m0

k\Pi+

\hbar2k2
2
4mc2
0

\nablaV x p\bar{\sigma}\right)unk(r)=En(k)unk(r)

,

where

\Pi=p+

\hbar
2
4mc2
0

\bar{\sigma} x \nablaV

and the perturbation Hamiltonian can be defined as

H'=

\hbar
m0

k\Pi.

The unperturbed Hamiltonian refers to the band-edge spin-orbit system (for k=0). At the band edge, the conduction band Bloch waves exhibits s-like symmetry, while the valence band states are p-like (3-fold degenerate without spin). Let us denote these states as

|S\rangle

, and

|X\rangle

,

|Y\rangle

and

|Z\rangle

respectively. These Bloch functions can be pictured as periodic repetition of atomic orbitals, repeated at intervals corresponding to the lattice spacing. The Bloch function can be expanded in the following manner:

un(r)=

A
\sum
j'

aj'(k)uj'0(r)+

B
\sum
\gamma

a\gamma(k)u\gamma(r)

,

where j' is in Class A and

\gamma

is in Class B. The basis functions can be chosen to be

u10(r)=uel(r)=\left|S

1,
2
1
2

\right\rangle=\left|S\uparrow\right\rangle

u20(r)=uSO(r)=\left|

1,
2
1
2

\right\rangle=

1
\sqrt3

|(X+iY)\downarrow\rangle+

1
\sqrt3

|Z\uparrow\rangle

u30(r)=ulh(r)=\left|

3,
2
1
2

\right\rangle=-

1
\sqrt6

|(X+iY)\downarrow\rangle+\sqrt{

2
3
} |Z\uparrow\rangle

u40(r)=uhh(r)=\left|

3,
2
3
2

\right\rangle=-

1
\sqrt2

|(X+iY)\uparrow\rangle

u50(r)=\bar{u}el(r)=\left|S

1,-
2
1
2

\right\rangle=-|S\downarrow\rangle

u60(r)=\bar{u}SO(r)=\left|

1,-
2
1
2

\right\rangle=

1
\sqrt3

|(X-iY)\uparrow\rangle-

1
\sqrt3

|Z\downarrow\rangle

u70(r)=\bar{u}lh(r)=\left|

3,-
2
1
2

\right\rangle=

1
\sqrt6

|(X-iY)\uparrow\rangle+\sqrt{

2
3
} |Z\downarrow\rangle

u80(r)=\bar{u}hh(r)=\left|

3,-
2
3
2

\right\rangle=-

1
\sqrt2

|(X-iY)\downarrow\rangle

.

Using Löwdin's method, only the following eigenvalue problem needs to be solved

A
\sum
j'
A
(U
jj'

-E\deltajj')aj'(k)=0,

where

A
U
jj'

=Hjj'+

B
\sum
\gammaj,j'
Hj\gammaH\gamma
E0-E\gamma

=Hjj'+

B
\sum
\gammaj,j'
'
H
'
H
\gammaj'
j\gamma
E0-E\gamma

,
'
H
j\gamma

=\left\langleuj0\right|

\hbar
m0

k\left(p+

\hbar
4m0c2

\bar{\sigma} x \nablaV\right)\left|u\gamma\right\rangle\sum\alpha

\hbark\alpha
m0
\alpha
p
j\gamma

.

The second term of

\Pi

can be neglected compared to the similar term with p instead of k. Similarly to the single band case, we can write for
A
U
jj'

Djj'\equiv

A
U
jj'

=Ej(0)\deltajj'+\sum\alpha\beta

\alpha\beta
D
jj'

k\alphak\beta,

\alpha\beta
D
jj'

=

\hbar2
2m0

\left[\deltajj'\delta\alpha\beta+

B
\sum
\gamma
\alpha
p
j\gamma
\beta
p
\gammaj'
+
\beta
p
j\gamma
\alpha
p
\gammaj'
m0(E0-E\gamma)

\right].

We now define the following parameters

A0=

\hbar2
2m0

+

\hbar2
2
m
0
B
\sum
\gamma
x
p
x\gamma
x
p
\gammax
E0-E\gamma

,

B0=

\hbar2
2m0

+

\hbar2
2
m
0
B
\sum
\gamma
y
p
x\gamma
y
p
\gammax
E0-E\gamma

,

C0=

\hbar2
2
m
0
B
\sum
\gamma
x
p
x\gamma
y
p
\gammay
+
y
p
x\gamma
x
p
\gammay
E0-E\gamma

,

and the band structure parameters (or the Luttinger parameters) can be defined to be

\gamma1=-

1
3
2m0
\hbar2

(A0+2B0),

\gamma2=-

1
6
2m0
\hbar2

(A0-B0),

\gamma3=-

1
6
2m0
\hbar2

C0,

These parameters are very closely related to the effective masses of the holes in various valence bands.

\gamma1

and

\gamma2

describe the coupling of the

|X\rangle

,

|Y\rangle

and

|Z\rangle

states to the other states. The third parameter

\gamma3

relates to the anisotropy of the energy band structure around the

\Gamma

point when

\gamma2\gamma3

.

Explicit Hamiltonian matrix

The Luttinger-Kohn Hamiltonian

Djj'
can be written explicitly as a 8X8 matrix (taking into account 8 bands - 2 conduction, 2 heavy-holes, 2 light-holes and 2 split-off)

H=\left(\begin{array}{cccccccc} Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0

\dagger
\\ P
z

&P+\Delta&\sqrt{2}Q\dagger&-S\dagger/\sqrt{2}&

\dagger
-\sqrt{2}P
+

&0&-\sqrt{3/2}S&-\sqrt{2}R\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ \end{array}\right)

References

  1. Book: S.L. Chuang. Physics of Optoelectronic Devices. 1995. First . Wiley . 124–190. New York . 978-0-471-10939-6. 31134252.

2. Luttinger, J. M. Kohn, W., "Motion of Electrons and Holes in Perturbed Periodic Fields", Phys. Rev. 97,4. pp. 869-883, (1955). https://journals.aps.org/pr/abstract/10.1103/PhysRev.97.869