The Luttinger–Kohn model is a flavor of the k·p perturbation theory used for calculating the structure of multiple, degenerate electronic bands in bulk and quantum well semiconductors. The method is a generalization of the single band k·
In this model, the influence of all other bands is taken into account by using Löwdin's perturbation method.[1]
All bands can be subdivided into two classes:
The method concentrates on the bands in Class A, and takes into account Class B bands perturbatively.
We can write the perturbed solution,
\phi | |
(0) | |
\phi | |
i |
\phi=
A,B | |
\sum | |
n |
an
(0) | |
\phi | |
n |
Assuming the unperturbed eigenstates are orthonormalized, the eigenequations are:
(E-Hmm)am=
A | |
\sum | |
n ≠ m |
Hmnan+
B | |
\sum | |
\alpha ≠ m |
Hm\alphaa\alpha
where
Hmn=\int
(0)\dagger | |
\phi | |
m |
H
(0) | |
\phi | |
n |
d3r=
(0) | |
E | |
n |
\deltamn
' | |
+H | |
mn |
From this expression, we can write:
am=
A | |
\sum | |
n ≠ m |
Hmn | |
E-Hmm |
an+
B | |
\sum | |
\alpha ≠ m |
Hm\alpha | |
E-Hmm |
a\alpha
where the first sum on the right-hand side is over the states in class A only, while the second sum is over the states on class B. Since we are interested in the coefficients
am
am=
A | |
\sum | |
n |
| ||||||||||
E-Hmm |
an
A | |
U | |
mn |
=Hmn+
B | |
\sum | |
\alpha ≠ m |
Hm\alphaH\alpha | |
E-H\alpha\alpha |
+\sum\alpha,\beta ≠
HmH\alpha\betaH\beta | |
(E-H\alpha\alpha)(E-H\beta\beta) |
+\ldots
Equivalently, for
an
n\inA
an=
A | |
\sum | |
n |
A | |
(U | |
mn |
-E\deltamn)an=0,m\inA
and
a\gamma=
A | |
\sum | |
n |
| |||||||||
E-H\gamma\gamma |
an=0,\gamma\inB
When the coefficients
an
a\gamma
The Hamiltonian including the spin-orbit interaction can be written as:
H=H0+
\hbar | |||||||||
|
\bar{\sigma} ⋅ \nablaV x p
where
\bar{\sigma}
Hunk(r)=\left(H0+
\hbar | |
m0 |
k ⋅ \Pi+
\hbar2k2 | |||||||||
|
\nablaV x p ⋅ \bar{\sigma}\right)unk(r)=En(k)unk(r)
where
\Pi=p+
\hbar | |||||||||
|
\bar{\sigma} x \nablaV
and the perturbation Hamiltonian can be defined as
H'=
\hbar | |
m0 |
k ⋅ \Pi.
The unperturbed Hamiltonian refers to the band-edge spin-orbit system (for k=0). At the band edge, the conduction band Bloch waves exhibits s-like symmetry, while the valence band states are p-like (3-fold degenerate without spin). Let us denote these states as
|S\rangle
|X\rangle
|Y\rangle
|Z\rangle
un(r)=
A | |
\sum | |
j' |
aj'(k)uj'0(r)+
B | |
\sum | |
\gamma |
a\gamma(k)u\gamma(r)
where j' is in Class A and
\gamma
u10(r)=uel(r)=\left|S
1 | , | |
2 |
1 | |
2 |
\right\rangle=\left|S\uparrow\right\rangle
u20(r)=uSO(r)=\left|
1 | , | |
2 |
1 | |
2 |
\right\rangle=
1 | |
\sqrt3 |
|(X+iY)\downarrow\rangle+
1 | |
\sqrt3 |
|Z\uparrow\rangle
u30(r)=ulh(r)=\left|
3 | , | |
2 |
1 | |
2 |
\right\rangle=-
1 | |
\sqrt6 |
|(X+iY)\downarrow\rangle+\sqrt{
2 | |
3 |
u40(r)=uhh(r)=\left|
3 | , | |
2 |
3 | |
2 |
\right\rangle=-
1 | |
\sqrt2 |
|(X+iY)\uparrow\rangle
u50(r)=\bar{u}el(r)=\left|S
1 | ,- | |
2 |
1 | |
2 |
\right\rangle=-|S\downarrow\rangle
u60(r)=\bar{u}SO(r)=\left|
1 | ,- | |
2 |
1 | |
2 |
\right\rangle=
1 | |
\sqrt3 |
|(X-iY)\uparrow\rangle-
1 | |
\sqrt3 |
|Z\downarrow\rangle
u70(r)=\bar{u}lh(r)=\left|
3 | ,- | |
2 |
1 | |
2 |
\right\rangle=
1 | |
\sqrt6 |
|(X-iY)\uparrow\rangle+\sqrt{
2 | |
3 |
u80(r)=\bar{u}hh(r)=\left|
3 | ,- | |
2 |
3 | |
2 |
\right\rangle=-
1 | |
\sqrt2 |
|(X-iY)\downarrow\rangle
Using Löwdin's method, only the following eigenvalue problem needs to be solved
A | |
\sum | |
j' |
A | |
(U | |
jj' |
-E\deltajj')aj'(k)=0,
where
A | |
U | |
jj' |
=Hjj'+
B | |
\sum | |
\gamma ≠ j,j' |
Hj\gammaH\gamma | |
E0-E\gamma |
=Hjj'+
B | |
\sum | |
\gamma ≠ j,j' |
| ||||||||||||||||
E0-E\gamma |
' | |
H | |
j\gamma |
=\left\langleuj0\right|
\hbar | |
m0 |
k ⋅ \left(p+
\hbar | |
4m0c2 |
\bar{\sigma} x \nablaV\right)\left|u\gamma\right\rangle ≈ \sum\alpha
\hbark\alpha | |
m0 |
\alpha | |
p | |
j\gamma |
.
The second term of
\Pi
A | |
U | |
jj' |
Djj'\equiv
A | |
U | |
jj' |
=Ej(0)\deltajj'+\sum\alpha\beta
\alpha\beta | |
D | |
jj' |
k\alphak\beta,
\alpha\beta | |
D | |
jj' |
=
\hbar2 | |
2m0 |
\left[\deltajj'\delta\alpha\beta+
B | |
\sum | |
\gamma |
| |||||||||||||||||||||||||||
m0(E0-E\gamma) |
\right].
We now define the following parameters
A0=
\hbar2 | |
2m0 |
+
\hbar2 | ||||||
|
B | |
\sum | |
\gamma |
| |||||||||||||||
E0-E\gamma |
,
B0=
\hbar2 | |
2m0 |
+
\hbar2 | ||||||
|
B | |
\sum | |
\gamma |
| |||||||||||||||
E0-E\gamma |
,
C0=
\hbar2 | ||||||
|
B | |
\sum | |
\gamma |
| |||||||||||||||||||||||||||
E0-E\gamma |
,
and the band structure parameters (or the Luttinger parameters) can be defined to be
\gamma1=-
1 | |
3 |
2m0 | |
\hbar2 |
(A0+2B0),
\gamma2=-
1 | |
6 |
2m0 | |
\hbar2 |
(A0-B0),
\gamma3=-
1 | |
6 |
2m0 | |
\hbar2 |
C0,
These parameters are very closely related to the effective masses of the holes in various valence bands.
\gamma1
\gamma2
|X\rangle
|Y\rangle
|Z\rangle
\gamma3
\Gamma
\gamma2 ≠ \gamma3
The Luttinger-Kohn Hamiltonian
Djj' |
H=\left(\begin{array}{cccccccc} Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0
\dagger | |
\\ P | |
z |
&P+\Delta&\sqrt{2}Q\dagger&-S\dagger/\sqrt{2}&
\dagger | |
-\sqrt{2}P | |
+ |
&0&-\sqrt{3/2}S&-\sqrt{2}R\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ Eel&Pz&\sqrt{2}Pz&-\sqrt{3}P+&0&\sqrt{2}P-&P-&0\\ \end{array}\right)
2. Luttinger, J. M. Kohn, W., "Motion of Electrons and Holes in Perturbed Periodic Fields", Phys. Rev. 97,4. pp. 869-883, (1955). https://journals.aps.org/pr/abstract/10.1103/PhysRev.97.869