Luttinger's theorem explained
In condensed matter physics, Luttinger's theorem[1] [2] is a result derived by J. M. Luttinger and J. C. Ward in 1960 that has broad implications in the field of electron transport. It arises frequently in theoretical models of correlated electrons, such as the high-temperature superconductors, and in photoemission, where a metal's Fermi surface can be directly observed.
Definition
Luttinger's theorem states that the volume enclosed by a material's Fermi surface is directly proportional to the particle density.
While the theorem is an immediate result of the Pauli exclusion principle in the case of noninteracting particles, it remains true even as interactions between particles are taken into consideration provided that the appropriate definitions of Fermi surface and particle density are adopted. Specifically, in the interacting case the Fermi surface must be defined according to the criteria that
or
where
is the single-particle
Green function in terms of
frequency and
momentum. Then Luttinger's theorem can be recast into the form
[3] n=2\intl{ReG(\omega=0,k)>0}
,where
is the real part of the above
Green function and
is the differential volume of
-space in
dimensions.
See also
References
General
- Behnam Farid . On the Luttinger theorem concerning number of particles in the ground states of systems of interacting fermions . cond-mat.str-el . 2007 . 0711.0952 .
- Behnam Farid . Tsvelik . Comment on "Breakdown of the Luttinger sum rule within the Mott-Hubbard insulator", by J. Kokalj and P. Prelovšek, Phys. Rev. B 78, 153103 (2008) . cond-mat.str-el . 2009 . 0909.2886 .
- Behnam Farid . Comment on "Violation of the Luttinger sum rule within the Hubbard model on a triangular lattice", by J. Kokalj and P. Prelovšek, Eur. Phys. J. B 63, 431 (2008) . cond-mat.str-el . 2009 . 0909.2887 .
- 1207.4201 . Kiaran B. Dave. Philip W. Phillips. Charles L. Kane . Absence of Luttinger's theorem . 2013 . 10.1103/PhysRevLett.110.090403 . 23496693. 110 . 9 . 090403. Physical Review Letters . 2013PhRvL.110i0403D. 1134967 .
- M. Oshikawa . 2000 . Topological Approach to Luttinger's Theorem and the Fermi Surface of a Kondo Lattice . . 84 . 15 . 3370–3373 . 10.1103/PhysRevLett.84.3370. cond-mat/0002392 . 2000PhRvL..84.3370O . 11019092. 9806160 .
- F. D. M. Haldane . 2005 . Luttinger's Theorem and Bosonization of the Fermi Surface . Proceedings of the International School of Physics "Enrico Fermi", Course CXXI "Perspectives in Many-Particle Physics" . R. A. Broglia . J. R. Schrieffer . J. R. Schrieffer . . 5–29 . cond-mat/0505529. 2005cond.mat..5529H .
Notes and References
- Luttinger, J. M. . Ward, J. C. . 1960. Ground-State Energy of a Many-Fermion System. II. Physical Review. 118 . 5 . 1417–1427. 10.1103/PhysRev.118.1417. 1960PhRv..118.1417L .
- Luttinger . J. M.. 1960. Fermi Surface and Some Simple Equilibrium Properties of a System of Interacting Fermions. Physical Review. 119 . 4 . 1153–1163. 10.1103/PhysRev.119.1153. 1960PhRv..119.1153L .
- Book: Abrikosov, A. A., Gorkov, L. P. and Dzyaloshinsky, I. E. . 1963 . Methods of Quantum Field Theory in Statistical Physics . revised . 168 . Dover, New York.