Luttinger–Ward functional explained
In solid state physics, the Luttinger–Ward functional, proposed by Joaquin Mazdak Luttinger and John Clive Ward in 1960, is a scalar functional of the bare electron-electron interaction and the renormalized one-particle propagator. In terms of Feynman diagrams, the Luttinger–Ward functional is the sum of all closed, bold, two-particle irreducible diagrams, i.e., all diagrams without particles going in or out that do not fall apart if one removes two propagator lines. It is usually written as
or
, where
is the one-particle Green's function and
is the bare interaction.
The Luttinger–Ward functional has no direct physical meaning, but it is useful in proving conservation laws.
, which differs from the Luttinger–Ward functional by a trivial term.
Construction
Given a system characterized by the action
in terms of
Grassmann fields
, the
partition function can be expressed as the
path integral:
Z[J]=\intD[c,\barc]\exp(-S[c,\barc]+\sumij\barciJijcj)
,
where
is a binary source field. By expansion in the
Dyson series, one finds that
is the sum of all (possibly disconnected), closed Feynman diagrams.
in turn is the
generating functional of the N-particle Green's function:
=-\langle
\bar
…
\bar
\rangle
=
\left.
\right|J=0
The linked-cluster theorem asserts that the effective action
is the sum of all closed, connected, bare diagrams.
in turn is the generating functional for the
connected Green's function. As an example, the two particle connected Green's function reads:
=-\langleci\barcjck\barcl\rangle+\langleci\barcj\rangle\langleck\barcl\rangle
-\langleci\barcl\rangle\langleck\barcj\rangle
=\left.
| \delta2W[J] |
\deltaJji\deltaJlk |
\right|J=0
To pass to the two-particle irreducible (2PI) effective action, one performs a Legendre transform of
to a new binary source field. One chooses an, at this point arbitrary,
convex
as the source and obtains the 2PI functional, also known as Baym–Kadanoff functional:
\Gamma[G]=[W[J]-\sumijJijGij]J=J[G]
with
.
Unlike the connected case, one more step is required to obtain a generating functional from the two-particle irreducible effective action
because of the presence of a non-interacting part. By subtracting it, one obtains the Luttinger–Ward functional:
\Phi[G]=\Gamma[G]-\Gamma0[G]
=\Gamma[G]-trlog(-G)-tr(\SigmaG)
,
where
is the
self-energy. Along the lines of the proof of the linked-cluster theorem, one can show that this is the generating functional for the two-particle irreducible propagators.
Properties
Diagrammatically, the Luttinger–Ward functional is the sum of all closed, bold, two-particle irreducible Feynman diagrams (also known as “skeleton” diagrams):
The diagrams are closed as they do not have any external legs, i.e., no particles going in or out of the diagram. They are “bold” because they are formulated in terms of the interacting or bold propagator rather than the non-interacting one. They are two-particle irreducible since they do not become disconnected if we sever up to two fermionic lines.
of a system:
\Omega=trlog(-G)+tr(\SigmaG)+\Phi\left[G\right]
is a generating functional for irreducible vertex quantities: the first functional derivative with respect to
gives the
self-energy, while the second derivative gives the partially two-particle irreducible four-point vertex:
;
\Gammaijkl=
| \delta2\Phi |
\deltaGij\deltaGkl |
While the Luttinger–Ward functional exists, it can be shown to be not unique for Hubbard-like models. In particular, the irreducible vertex functions show a set of divergencies, which causes the self-energy to bifurcate into a physical and an unphysical solution.
Baym and Kadanoff showed that we can satisfy the conservation law for any functional
, thanks to the Noether's theorem. This is followed by the fact that the equation of motion of
responding to one-body external fields apparently satisfies the space- and time- translational symmetries as well as the abelian gauge symmetry (phase symmetry), as long as the equation of motion is given with the derivative of
. Note that reverse is also true. Based on the diagramatic analysis, what Baym found is that
| \delta\Sigma(1,\left[G\right]) | = |
\deltaG(2) |
| \delta\Sigma(2,\left[G\right]) |
\deltaG(1) |
is needed to satisfy the conservation law. This is nothing but the completely-integrable condition, implying the existenceof
such that
\Sigma\left[G\right]= | \delta\Phi\left[G\right] |
\deltaG |
(recall the completely-integrable condition for
).
Thus the remainig problem is how to determine
approximately.Such approximations are called as
conserving approximation. Some examples:
to so-called ring diagrams:
\Phi[G] ≈ GUG+GUGGUG+\ldots
(A ring diagram consists of polarisation bubbles connected by interaction lines).
, where
are lattice site indices.
See also
References
[1] [2] [3] [4] [5] [6] [7]
Notes and References
- Potthoff, M. . Self-energy-functional approach to systems of correlated electrons . European Physical Journal B . 2003 . 32 . 4 . 429–436 . 10.1140/epjb/e2003-00121-8. cond-mat/0301137 . 2003EPJB...32..429P . 55745257 .
- Luttinger, J. M. . Ward, J. C. . 1960 . Ground-State Energy of a Many-Fermion System. II . . 118 . 5 . 1417–1427 . 10.1103/PhysRev.118.1417 . 1960PhRv..118.1417L.
- Conservation Laws and Correlation Functions . Baym, G. . Kadanoff, L. P. . Physical Review . 124 . 2 . 287–299 . 1961 . 10.1103/PhysRev.124.287. 1961PhRv..124..287B .
- Electronic structure calculations with dynamical mean-field theory . Kotliar, G. . Savrasov, S. Y. . Haule, K. . Oudovenko, V. S. . Parcollet, O. . Marianetti, C. A. . Rev. Mod. Phys. . 78 . 3 . 865–951 . 2006 . 10.1103/RevModPhys.78.865 . 2006RvMP...78..865K. cond-mat/0511085 . 10.1.1.475.7032 . 119099745 .
- Renormalization group flow of the Luttinger–Ward functional: Conserving approximations and application to the Anderson impurity model . Rentrop, J. F. . Meden, V. . Jakobs, S. G. . Phys. Rev. B . 93 . 19 . 195160 . 2016 . 10.1103/PhysRevB.93.195160. 1602.06120 . 2016PhRvB..93s5160R . 119212288 .
- Nonexistence of the Luttinger-Ward Functional and Misleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like Models . Kozik, E. . Ferrero, M. . Georges, A. . . 114 . 15 . 156402 . 2015 . 10.1103/PhysRevLett.114.156402 . 25933324 . 2015PhRvL.114o6402K. 1407.5687 . 23241294 .
- Divergent Precursors of the Mott-Hubbard Transition at the Two-Particle Level. Schaefer, T.. Rohringer, G.. Gunnarsson, O. . Ciuchi, S.. Sangiovanni, G.. Toschi, A.. Phys. Rev. Lett.. 110. 24. 246405. 2013. 10.1103/PhysRevLett.110.246405. 25165946. 1303.0246. 2013PhRvL.110x6405S. 14280120.