In mathematics, a Lucas–Carmichael number is a positive composite integer n such that
The first condition resembles the Korselt's criterion for Carmichael numbers, where -1 is replaced with +1. The second condition eliminates from consideration some trivial cases like cubes of prime numbers, such as 8 or 27, which otherwise would be Lucas–Carmichael numbers (since n3 + 1 = (n + 1)(n2 - n + 1) is always divisible by n + 1).
They are named after Édouard Lucas and Robert Carmichael.
The smallest Lucas–Carmichael number is 399 = 3 × 7 × 19. It is easy to verify that 3+1, 7+1, and 19+1 are all factors of 399+1 = 400.
The smallest Lucas–Carmichael number with 4 factors is 8855 = 5 × 7 × 11 × 23.
The smallest Lucas–Carmichael number with 5 factors is 588455 = 5 × 7 × 17 × 23 × 43.
It is not known whether any Lucas–Carmichael number is also a Carmichael number.
Thomas Wright proved in 2016 that there are infinitely many Lucas–Carmichael numbers.[1] If we let
N(X)
X
K
N(X)\gg
K/\left(logloglogX\right)2 | |
X |
The first few Lucas–Carmichael numbers and their prime factors are listed below.
399 | = 3 × 7 × 19 | |
935 | = 5 × 11 × 17 | |
2015 | = 5 × 13 × 31 | |
2915 | = 5 × 11 × 53 | |
4991 | = 7 × 23 × 31 | |
5719 | = 7 × 19 × 43 | |
7055 | = 5 × 17 × 83 | |
8855 | = 5 × 7 × 11 × 23 | |
12719 | = 7 × 23 × 79 | |
18095 | = 5 × 7 × 11 × 47 | |
20705 | = 5 × 41 × 101 | |
20999 | = 11 × 23 × 83 | |
22847 | = 11 × 31 × 67 | |
29315 | = 5 × 11 × 13 × 41 | |
31535 | = 5 × 7 × 17 × 53 | |
46079 | = 11 × 59 × 71 | |
51359 | = 7 × 11 × 23 × 29 | |
60059 | = 19 × 29 × 109 | |
63503 | = 11 × 23 × 251 | |
67199 | = 11 × 41 × 149 | |
73535 | = 5 × 7 × 11 × 191 | |
76751 | = 23 × 47 × 71 | |
80189 | = 17 × 53 × 89 | |
81719 | = 11 × 17 × 19 × 23 | |
88559 | = 19 × 59 × 79 | |
90287 | = 17 × 47 × 113 | |
104663 | = 13 × 83 × 97 | |
117215 | = 5 × 7 × 17 × 197 | |
120581 | = 17 × 41 × 173 | |
147455 | = 5 × 7 × 11 × 383 | |
152279 | = 29 × 59 × 89 | |
155819 | = 19 × 59 × 139 | |
162687 | = 3 × 7 × 61 × 127 | |
191807 | = 7 × 11 × 47 × 53 | |
194327 | = 7 × 17 × 23 × 71 | |
196559 | = 11 × 107 × 167 | |
214199 | = 23 × 67 × 139 | |
218735 | = 5 × 11 × 41 × 97 | |
230159 | = 47 × 59 × 83 | |
265895 | = 5 × 7 × 71 × 107 | |
357599 | = 11 × 19 × 29 × 59 | |
388079 | = 23 × 47 × 359 | |
390335 | = 5 × 11 × 47 × 151 | |
482143 | = 31 × 103 × 151 | |
588455 | = 5 × 7 × 17 × 23 × 43 | |
653939 | = 11 × 13 × 17 × 269 | |
663679 | = 31 × 79 × 271 | |
676799 | = 19 × 179 × 199 | |
709019 | = 17 × 179 × 233 | |
741311 | = 53 × 71 × 197 | |
760655 | = 5 × 7 × 103 × 211 | |
761039 | = 17 × 89 × 503 | |
776567 | = 11 × 227 × 311 | |
798215 | = 5 × 11 × 23 × 631 | |
880319 | = 11 × 191 × 419 | |
895679 | = 17 × 19 × 47 × 59 | |
913031 | = 7 × 23 × 53 × 107 | |
966239 | = 31 × 71 × 439 | |
966779 | = 11 × 179 × 491 | |
973559 | = 29 × 59 × 569 | |
1010735 | = 5 × 11 × 17 × 23 × 47 | |
1017359 | = 7 × 23 × 71 × 89 | |
1097459 | = 11 × 19 × 59 × 89 | |
1162349 | = 29 × 149 × 269 | |
1241099 | = 19 × 83 × 787 | |
1256759 | = 7 × 17 × 59 × 179 | |
1525499 | = 53 × 107 × 269 | |
1554119 | = 7 × 53 × 59 × 71 | |
1584599 | = 37 × 113 × 379 | |
1587599 | = 13 × 97 × 1259 | |
1659119 | = 7 × 11 × 29 × 743 | |
1707839 | = 7 × 29 × 47 × 179 | |
1710863 | = 7 × 11 × 17 × 1307 | |
1719119 | = 47 × 79 × 463 | |
1811687 | = 23 × 227 × 347 | |
1901735 | = 5 × 11 × 71 × 487 | |
1915199 | = 11 × 13 × 59 × 227 | |
1965599 | = 79 × 139 × 179 | |
2048255 | = 5 × 11 × 167 × 223 | |
2055095 | = 5 × 7 × 71 × 827 | |
2150819 | = 11 × 19 × 41 × 251 | |
2193119 | = 17 × 23 × 71 × 79 | |
2249999 | = 19 × 79 × 1499 | |
2276351 | = 7 × 11 × 17 × 37 × 47 | |
2416679 | = 23 × 179 × 587 | |
2581319 | = 13 × 29 × 41 × 167 | |
2647679 | = 31 × 223 × 383 | |
2756159 | = 7 × 17 × 19 × 23 × 53 | |
2924099 | = 29 × 59 × 1709 | |
3106799 | = 29 × 149 × 719 | |
3228119 | = 19 × 23 × 83 × 89 | |
3235967 | = 7 × 17 × 71 × 383 | |
3332999 | = 19 × 23 × 29 × 263 | |
3354695 | = 5 × 17 × 61 × 647 | |
3419999 | = 11 × 29 × 71 × 151 | |
3441239 | = 109 × 131 × 241 | |
3479111 | = 83 × 167 × 251 | |
3483479 | = 19 × 139 × 1319 | |
3700619 | = 13 × 41 × 53 × 131 | |
3704399 | = 47 × 269 × 293 | |
3741479 | = 7 × 17 × 23 × 1367 | |
4107455 | = 5 × 11 × 17 × 23 × 191 | |
4285439 | = 89 × 179 × 269 | |
4452839 | = 37 × 151 × 797 | |
4587839 | = 53 × 107 × 809 | |
4681247 | = 47 × 103 × 967 | |
4853759 | = 19 × 23 × 29 × 383 | |
4874639 | = 7 × 11 × 29 × 37 × 59 | |
5058719 | = 59 × 179 × 479 | |
5455799 | = 29 × 419 × 449 | |
5669279 | = 7 × 11 × 17 × 61 × 71 | |
5807759 | = 83 × 167 × 419 | |
6023039 | = 11 × 29 × 79 × 239 | |
6514199 | = 43 × 197 × 769 | |
6539819 | = 11 × 13 × 19 × 29 × 83 | |
6656399 | = 29 × 89 × 2579 | |
6730559 | = 11 × 23 × 37 × 719 | |
6959699 | = 59 × 179 × 659 | |
6994259 | = 17 × 467 × 881 | |
7110179 | = 37 × 41 × 43 × 109 | |
7127999 | = 23 × 479 × 647 | |
7234163 | = 17 × 41 × 97 × 107 | |
7274249 | = 17 × 449 × 953 | |
7366463 | = 13 × 23 × 71 × 347 | |
8159759 | = 19 × 29 × 59 × 251 | |
8164079 | = 7 × 11 × 229 × 463 | |
8421335 | = 5 × 13 × 23 × 43 × 131 | |
8699459 | = 43 × 307 × 659 | |
8734109 | = 37 × 113 × 2089 | |
9224279 | = 53 × 269 × 647 | |
9349919 | = 19 × 29 × 71 × 239 | |
9486399 | = 3 × 13 × 79 × 3079 | |
9572639 | = 29 × 41 × 83 × 97 | |
9694079 | = 47 × 239 × 863 | |
9868715 | = 5 × 43 × 197 × 233 |