Lucas's theorem explained

\tbinom{m}{n}

by a prime number p in terms of the base p expansions of the integers m and n.

Lucas's theorem first appeared in 1878 in papers by Édouard Lucas.[1]

Statement

For non-negative integers m and n and a prime p, the following congruence relation holds:

k\binom{m
\binom{m}{n}\equiv\prod
i}{n

i}\pmodp,

where
k+m
m=m
k-1

pk-1+ … +m1p+m0,

and
k+n
n=n
k-1

pk-1+ … +n1p+n0

are the base p expansions of m and n respectively. This uses the convention that

\tbinom{m}{n}=0

if m < n.

Proofs

There are several ways to prove Lucas's theorem.

Consequences

\tbinom{m}{n}

is divisible by a prime p if and only if at least one of the base p digits of n is greater than the corresponding digit of m.

\tbinom{m}{n}

is odd if and only if the binary digits (bits) in the binary expansion of n are a subset of the bits of m.

Non-prime moduli

Lucas's theorem can be generalized to give an expression for the remainder when

\tbinommn

is divided by a prime power pk. However, the formulas become more complicated.

If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ srp − 1, a ≥ 0, and b ≥ 0.

\binom{pa+r}{pb+s}\equiv\binomab\binomrs(1+pa(Hr-Hr-s)+pb(Hr-s

2},
-H
s))\pmod{p
where

Hn=1+\tfrac12+\tfrac13+ … +\tfrac1n

is the nth harmonic number.[2]

Generalizations of Lucas's theorem for higher prime powers pk are also given by Davis and Webb (1990)[3] and Granville (1997).[4]

Variations and generalizations

\tbinom{m}{n}

(or in other words, the valuation of the binomial coefficient with respect to the prime p) is equal to the number of carries that occur when n and m − n are added in the base p.

External links

Notes and References

    • Edouard Lucas . Théorie des Fonctions Numériques Simplement Périodiques. 2369308 . . 1878 . 1 . 2 . 184–196 . 10.2307/2369308. 1505161. (part 1);
    • Edouard Lucas . Théorie des Fonctions Numériques Simplement Périodiques. 2369311 . . 1878 . 1 . 3 . 197–240 . 10.2307/2369311. 1505164. (part 2);
    • Edouard Lucas . Théorie des Fonctions Numériques Simplement Périodiques. 2369373 . . 1878 . 1 . 4 . 289–321 . 10.2307/2369373. 1505176. (part 3)
  1. Rowland . Eric . 21 Jun 2020 . Lucas' theorem modulo p2 . 2006.11701 . math.NT.
  2. Kenneth S. Davis, William A. Webb . Lucas' Theorem for Prime Powers . European Journal of Combinatorics . 11 . 3 . 1990 . 229–233 . 10.1016/S0195-6698(13)80122-9.
  3. . Arithmetic Properties of Binomial Coefficients I: Binomial coefficients modulo prime powers . Canadian Mathematical Society Conference Proceedings . 20 . 253–275 . 1997 . 1483922 . dead . https://web.archive.org/web/20170202003812/http://www.dms.umontreal.ca/~andrew/PDF/BinCoeff.pdf . 2017-02-02 .
  4. Désarménien . Jacques . Un Analogue des Congruences de Kummer pour les q-nombres d'Euler . European Journal of Combinatorics . March 1982 . 3 . 1 . 19–28 . 10.1016/S0195-6698(82)80005-X.