In mathematical analysis, Lorentz spaces, introduced by George G. Lorentz in the 1950s,[1] [2] are generalisations of the more familiar Lp
The Lorentz spaces are denoted by
Lp,q
Lp
Lp
Lp
p
q
Lp
(X,\mu)
f
\|f\| | |
Lp,q(X,\mu) |
=
| ||||
p |
\left\|t\mu\{|f|\ge
| ||||
t\} |
\right
\| | ||||||||||
|
where
0<p<infty
0<q\leqinfty
q<infty
\|f\| | |
Lp,q(X,\mu) |
| ||||
=p |
infty | |
\left(\int | |
0 |
tq\mu\left\{x:|f(x)|\ge
| ||||
t\right\} |
dt | |
t |
| ||||
\right) |
=
infty | |
\left(\int | |
0 |
l(\tau\mu\left\{x:|f(x)|p\ge\tau
| ||||
\right\}r) |
d\tau | |
\tau |
| ||||
\right) |
.
and, when
q=infty
p | |
\|f\| | |
Lp,infty(X,\mu) |
=\supt>0\left(tp\mu\left\{x:|f(x)|>t\right\}\right).
It is also conventional to set
Linfty,infty(X,\mu)=Linfty(X,\mu)
The quasinorm is invariant under rearranging the values of the function
f
f
(X,\mu)
f\ast:[0,infty)\to[0,infty]
f\ast(t)=inf\{\alpha\inR+:df(\alpha)\leqt\}
where
df
f
df(\alpha)=\mu(\{x\inX:|f(x)|>\alpha\}).
Here, for notational convenience,
inf\varnothing
infty
The two functions
|f|
f\ast
λl(\{x\inX:|f(x)|>\alpha\}r)=λl(\{t>0:f\ast(t)>\alpha\}r), \alpha>0,
where
λ
f
R\nit\mapsto\tfrac{1}{2}f\ast(|t|).
Given these definitions, for
0<p<infty
0<q\leqinfty
\|f
\| | |
Lp, |
=\begin{cases}\left(\displaystyle
infty | |
\int | |
0 |
\left
| ||||
(t |
f\ast(t)\right)q
dt | |
t |
| ||||
\right) |
&q\in(0,infty),\\ \sup\limitst
| ||||
t |
f\ast(t)&q=infty. \end{cases}
When
(X,\mu)=(N,\#)
N
For
(an)
infty\inR | |
n=1 |
N
CN
1\leqp<infty
\ellp
c0
\limn\toinftyan=0
c00
d(w,p)
Let
w=(wn)
infty\in | |
n=1 |
c0\setminus\ell1
1=w1\geqw2\geqw3\geq …
d(w,p)
d(w,p)
c00
\| ⋅ \|d(w,p)
The Lorentz spaces are genuinely generalisations of the
Lp
p
Lp,p=Lp
Lp,
Lp
1<p<infty
1\leqq\leqinfty
p=1
L1,=L1
L1,infty
L1
L1,infty
f(x)=\tfrac{1}{x}\chi(0,1)(x) and g(x)=\tfrac{1}{1-x}\chi(0,1)(x),
whose
L1,infty
f+g
The space
Lp,q
Lp,
q<r
L1
Linfty
\|fg\| | |
Lp,q |
\le
A | |
p1,p2,q1,q2 |
\|f\| | |||||
|
\|g\| | |||||
|
0<p,p1,p2<infty
0<q,q1,q2\leinfty
1/p=1/p1+1/p2
1/q=1/q1+1/q2
If
(X,\mu)
(Lp,q)*=\{0\}
0<p<1
1=p<q<infty
(Lp,q)*=Lp',q'
1<p<infty,0<q\leinfty
0<q\lep=1
(Lp,infty)*\ne\{0\}
1\lep\leinfty
p'=p/(p-1)
1<p<infty
p'=infty
0<p\le1
infty'=1
The following are equivalent for
0<p\leinfty,1\leq\leinfty
\|f\| | |
Lp,q |
\leAp,qC
f=style\sumn\inZfn
fn
\le2n
0<Hn+1\le|fn|\leHn
n/p | |
\|H | |
n2 |
\| | |
\ellq(Z) |
\leAp,qC
|f|\lestyle\sumn\inZHn\chi
En |
\mu(En)\leAp,q'2n
n/p | |
\|H | |
n2 |
\| | |
\ellq(Z) |
\leAp,qC
f=style\sumn\inZfn
fn
En
n\le|f | |
B | |
n|\le |
n | |
B | |
12 |
B0,B1
1/p | |
\|2 | |
n) |
\| | |
\ellq(Z) |
\leAp,qC
|f|\lestyle\sumn\inZ
n\chi | |
2 | |
En |
1/p | |
\|2 | |
n) |
\| | |
\ellq(Z) |
\leAp,qC