In computer science, the longest palindromic substring or longest symmetric factor problem is the problem of finding a maximum-length contiguous substring of a given string that is also a palindrome. For example, the longest palindromic substring of "bananas" is "anana". The longest palindromic substring is not guaranteed to be unique; for example, in the string "abracadabra", there is no palindromic substring with length greater than three, but there are two palindromic substrings with length three, namely, "aca" and "ada". In some applications it may be necessary to return all maximal palindromic substrings (that is, all substrings that are themselves palindromes and cannot be extended to larger palindromic substrings) rather than returning only one substring or returning the maximum length of a palindromic substring.
invented an
O(n)
n
O(n)
O(n)
O(n)
\sigma
2o(log
O(nlog\sigma/logn)
O(nlog\sigma/logn)
The longest palindromic substring problem should not be confused with the different problem of finding the longest palindromic subsequence.
This algorithm is slower than Manacher's algorithm, but is a good stepping stone for understanding Manacher's algorithm. It looks at each character as the center of a palindrome and loops to determine the largest palindrome with that center.
The loop at the center of the function only works for palindromes where the length is an odd number. The function works for even-length palindromes by modifying the input string. The character '|' is inserted between every character in the inputs string, and at both ends. So the input "book" becomes "|b|o|o|k|". The even-length palindrome "oo" in "book" becomes the odd-length palindrome "|o|o|".
Longest_Palindrome_SLOW(string S, string S')
The runtime of this algorithm is
O(n2)
n
n/2
Below is the pseudocode for Manacher's algorithm. The algorithm is faster than the previous algorithm because it exploits when a palindrome happens inside another palindrome.
For example, consider the input string "abacaba". By the time it gets to the "c", Manacher's algorithm will have identified the length of every palindrome centered on the letters before the "c". At the "c", it runs a loop to identify the largest palindrome centered on the "c": "abacaba". With that knowledge, everything after the "c" looks like the reflection of everything before the "c". The "a" after the "c" has the same longest palindrome as the "a" before the "c". Similarly, the "b" after the "c" has a longest palindrome that is at least the length of the longest palindrome centered on the "b" before the "c". There are some special cases to consider, but that trick speeds up the computation dramatically.
Longest_Palindrome(string S, string S')
Manacher's algorithm is faster because it reuses precomputed data when a palindrome exists inside another palindrome. There are 3 cases of this. They are represented by the "if / else if / else" statement in the pseudocode.
The first case is when the palindrome at MirroredCenter
lies completely inside the "Old" palindrome. In this situation, the palindrome at Center
will have the same length as the one at MirroredCenter
. For example, if the "Old" palindrome is "abcbpbcba", we can see that the palindrome centered on "c" after the "p" must have the same length as the palindrome centered on the "c" before the "p".
The second case is when the palindrome at MirroredCenter
extends outside the "Old" palindrome. That is, it extends "to the left" (or, contains characters with a lower index than any inside the "Old" palindrome). Because the "Old" palindrome is the largest possible palindrome centered on OldCenter
, we know the characters before and after it are different. Thus, the palindrome at Center
will run exactly up to the border of the "Old" palindrome, because the next character will be different than the one inside the palindrome at MirroredCenter
. For example, if the string was "ababc", the "Old" palindrome could be "bab" with the Center
being the second "b" and the MirroredCenter
being the first "b". Since the palindrome at the MirroredCenter
is "aba" and extends beyond the boundaries of the "Old" palindrome, we know the longest palindrome at the second "b" can only extend up to the border of the "Old" palindrome. We know this because if the character after the "Old" palindrome had been an "a" instead of a "c", the "Old" palindrome would have been longer.
The third and last case is when the palindrome at MirroredCenter
extends exactly up to the border of the "Old" palindrome. In this case, we don't know if the character after the "Old" palindrome might make the palindrome at Center
longer than the one at MirroredCenter
. But we do know that the palindrome at Center
is at least as long as the one at MirroredCenter
. In this case, Radius
is initialized to the radius of the palindrome at MirroredCenter
and the search starts from there. An example string would be "abcbpbcbp" where the "Old" palindrome is "bcbpbcb" and the Center
is on the second "c". The MirroredCenter
is the first "c" and it has a longest palindrome of "bcb". The longest palindrome at the Center
on the second "c" has to be at least that long and, in this case, is longer.
The algorithm runs in linear time. This can be seen by noting that Center
strictly increases after each outer loop and the sum Center + Radius
is non-decreasing. Moreover, the number of operations in the first inner loop is linear in the increase of the sum Center + Radius
while the number of operations in the second inner loop is linear in the increase of Center
. Since Center ≤ 2n+1
and Radius ≤ n
, the total number of operations in the first and second inner loops is
O(n)
O(n)
O(n)