The Lommel differential equation, named after Eugen von Lommel, is an inhomogeneous form of the Bessel differential equation:
z2
d2y | |
dz2 |
+z
dy | |
dz |
+(z2-\nu2)y=z\mu+1.
Solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by,
s\mu,\nu(z)=
\pi | |
2 |
\left[Y\nu(z)
z | |
\int | |
0 |
x\muJ\nu(x)dx-J\nu(z)
z | |
\int | |
0 |
x\muY\nu(x)dx\right],
S\mu,\nu(z)=s\mu,\nu(z)+2\mu-1\Gamma\left(
\mu+\nu+1 | |
2 |
\right)\Gamma\left(
\mu-\nu+1 | |
2 |
\right) \left(\sin\left[(\mu-\nu)
\pi | |
2 |
\right]J\nu(z)-\cos\left[(\mu-\nu)
\pi | |
2 |
\right]Y\nu(z)\right),
where Jν(z) is a Bessel function of the first kind and Yν(z) a Bessel function of the second kind.
The s function can also be written as[1]
s\mu,(z)=
z\mu | |
(\mu-\nu+1)(\mu+\nu+1) |
{}1F2(1;
\mu | |
2 |
-
\nu | |
2 |
+
3 | |
2 |
,
\mu | |
2 |
+
\nu | |
2 |
+
3 | ;- | |
2 |
z2 | |
4 |
),