s(t)
r(t)
s*lr(t)=r*ls(t)=
infty | ||
\int | s\left( | |
0 |
t | |
a |
\right)r(a)
da | |
a |
when this quantity exists.
The logarithmic convolution can be related to the ordinary convolution by changing the variable from
t
v=logt
\begin{align} s*lr(t)&=
infty | |
\int | |
0 |
s\left(
t | |
a |
\right)r(a)
da | |
a |
\\ &
infty | ||
= \int | s\left( | |
-infty |
t | |
eu |
\right)r(eu)du\\ &=
infty | |
\int | |
-infty |
s\left(elog\right)r(eu)du. \end{align}
Define
f(v)=s(ev)
g(v)=r(ev)
v=logt
s*lr(v)=f*g(v)=g*f(v)=r*ls(v).