Locally recoverable codes are a family of error correction codes that were introduced first by D. S. Papailiopoulos and A. G. Dimakis and have been widely studied in information theory due to their applications related to distributive and cloud storage systems.
An
[n,k,d,r]q
[n,k,d]q
fi
i
r
c=(c1,\ldots,cn)\inC
ci
ci
Let
C
[n,k,d]q
i\in\{1,\ldots,n\}
ri
i
ri
i
An
[n,k,d,r]q
[n,k,d]q
C\in
n | |
F | |
q |
r
Let
C
[n,k,d]q
i\in\{1,\ldots,n\}
xi=
f(x | |
i1 |
,\ldots,
x | |
ir |
)
ij ≠ i
Theorem Let
n=(r+1)s
C
[n,k,d]q
s
r+1
d\leqn-k-\left\lceil
k | |
r |
\right\rceil+2.
An
[n,k,d,r]q
C
C
d=n-k-\left\lceil
k | |
r |
\right\rceil+2.
Let
f\inFq[x]
\ell
f
r
\ell
•
f
r+1
• there exist distinct subsets
A1,\ldots,A\ell
Fq
– for any
i\in\{1,\ldots,\ell\}
f(Ai)=\{ti\}
ti\inFq
f
Ai
–
\#Ai=r+1
–
Ai\capAj=\varnothing
i ≠ j
We say that is a splitting covering for
f
The Tamo–Barg construction utilizes good polynomials.
• Suppose that a
(r,\ell)
f(x)
Fq
i\in\{1,\ldots,\ell\}
• Let
s\leq\ell-1
• Consider the following
Fq
• Let .
• The code
\{\operatorname{ev}T(g):g\inV\}
((r+1)\ell,(s+1)r,d,r)
\operatorname{ev}T
g
T
Ai
i\in\{1,\ldots,\ell\}
|T|=(r+1)\ell
• Dimension. The dimension of the code is
(s+1)r
s
\ell-1
gi
\deg(f(x))-2
\deg(f(x))-1=r
V
s+1
gi
• Distance. The distance is given by the fact that
V\subseteqFq[x]\leq
k=r+1-2+s(r+1)
k
(r+1)\ell-((r+1)-2+s(r+1))
• Locality. After the erasure of the single component, the evaluation at
ai\inAi
|Ai|=r+1
a\inAi
r
r
To see this,
g
Aj
h
\deg(f(x))-2=r+1-2=r-1
V
f
Aj
gi
\deg(f(x))-2
|Aj\backslash\{aj\}|=r
r
r-1
h
aj
g(aj)
We will use
x5\inF41[x]
[15,8,6,4]
Ai
i\in\{1,\ldots,8\}
A1=\{1,10,16,18,37\}
A2=2A1
A3=3A1
A4=4A1
A5=5A1
A6=6A1
A7=11A1
A8=15A1
5 | |
A | |
1 |
=\{1\}
5 | |
A | |
2 |
=\{32\}
5 | |
A | |
3 |
=\{38\}
5 | |
A | |
4 |
=\{40\}
5 | |
A | |
5 |
=\{9\}
5 | |
A | |
6 |
=\{27\}
5 | |
A | |
7 |
=\{3\}
5 | |
A | |
8 |
=\{14\}
x5
(4,8)
F41
k=8
n=15
F41
Next, let us define the encoding polynomial:
fa(x)=
r-1 | |
\sum | |
i=0 |
i | |
f | |
i(x)x |
fi(x)=
| |||||
\sum | |||||
i=0 |
ai,jg(x)j
fa(x)=
a0,0+
a0,1x5+
a1,0x+
a1,1x6+
a2,0x2+
a2,1x7+
a3,0x3+
a3,1x8
a=
(a0,0,a0,1,a1,0,a1,1,a2,0,a2,1,a3,0,a3,1)
m
c
m
G=\begin{pmatrix} 1&1&1&1&1&1&1&1&1&1&1&1&1&1&1\\ 1&1&1&1&1&32&32&32&32&32&38&38&38&38&38\\ 1&10&16&18&37&2&20&32&33&36&3&7&13&29&30\\ 1&10&16&18&37&23&25&40&31&4&32&20&2&36&33\\ 1&18&10&37&16&4&31&40&23&25&9&8&5&21&39\\ 1&18&10&37&16&5&8&9&39&21&14&17&26&19&6\\ 1&16&37&10&18&8&5&9&21&39&27&15&24&35&22\\ 1&16&37&10&18&10&37&1&16&18&1&37&10&18&16 \end{pmatrix} .
m=(1,1,1,1,1,1,1,1)
c=mG=(8,8,5,9,21,3,36,31,32,12,2,20,37,33,21)
Observe that we constructed an optimal LRC; therefore, using the Singleton bound, we have that the distance of this code is
d=n-k-\left\lceil
k | |
r |
\right\rceil+2=15-8-2+2=7
A code
C
r
t
t
r
(r,t)a
Theorem The minimum distance of
[n,k,d]q
r
t
r
t
(r,t)i
d
[n,k,d]q
(r,t)i
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Locally recoverable code".
Except where otherwise indicated, Everything.Explained.Today is © Copyright 2009-2025, A B Cryer, All Rights Reserved. Cookie policy.