Local invariant cycle theorem explained
from a
Kähler manifold
to the unit disk that has maximal rank everywhere except over 0, each cohomology class on
is the restriction of some cohomology class on the entire
if the cohomology class is invariant under a circle action (monodromy action); in short,
\operatorname{H}*(X)\to\operatorname{H}*(p-1
is surjective. The conjecture was first proved by Clemens. The theorem is also a consequence of the BBD decomposition.
over the spectrum
of the henselization of
,
an algebraically closed field, if
is essentially smooth over
and
} smooth over
, then the homomorphism on
-cohomology:
\to
| *(X |
\operatorname{H} | |
| \overline{η |
})^is surjective, where
are the special and generic points and the homomorphism is the composition
\simeq\operatorname{H}*(X)\to
)\to
| *(X |
\operatorname{H} | |
| \overline{η |
}).
See also
References
- Beilinson. Alexander A.. Alexander Beilinson. Joseph Bernstein. Joseph . Bernstein. Pierre Deligne. Pierre . Deligne. 1982. Faisceaux pervers. Astérisque. 100. . Paris. French. 0751966 .
- 120378293 . 10.1215/S0012-7094-77-04410-6 . Degeneration of Kähler manifolds . 1977 . Clemens . C. H. . Duke Mathematical Journal . 44 . 2 .
- La conjecture de Weil : II . Publications Mathématiques de l'IHÉS . 1980 . 52 . 137–252 . Deligne . Pierre . 10.1007/BF02684780 . 189769469. 601520 . 0456.14014 .
- Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems . 10.1090/S0002-9904-1970-12444-2 . 1970 . Griffiths . Phillip A. . Bulletin of the American Mathematical Society . 76 . 2 . 228–296 . free .
- Morrison, David R. The Clemens-Schmid exact sequence and applications, Topics in transcendental algebraic geometry (Princeton, N.J., 1981/1982), 101-119, Ann. of Math. Stud., 106, Princeton Univ. Press, Princeton, NJ, 1984. http://web.math.ucsb.edu/~drm/papers/clemens-schmid.pdf