In algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace.
Given a subspace
A\subseteqX
0\toC\bullet(A)\toC\bullet(X)\toC\bullet(X)/C\bullet(A)\to0,
where
C\bullet(X)
C\bullet(X)
C\bullet(A)
\partial'\bullet
Cn(X,A):=Cn(X)/Cn(A)
… \longrightarrowCn(X,A)\xrightarrow{\partial'n}Cn-1(X,A)\longrightarrow … .
By definition, the th relative homology group of the pair of spaces
(X,A)
Hn(X,A):=\ker\partial'n/\operatorname{im}\partial'n+1.
One says that relative homology is given by the relative cycles, chains whose boundaries are chains on A, modulo the relative boundaries (chains that are homologous to a chain on A, i.e., chains that would be boundaries, modulo A again).[1]
The above short exact sequences specifying the relative chain groups give rise to a chain complex of short exact sequences. An application of the snake lemma then yields a long exact sequence
… \toHn(A)\stackrel{i*}{\to}Hn(X)\stackrel{j*}{\to}Hn(X,A)\stackrel{\partial}{\to}Hn-1(A)\to … .
The connecting map
\partial
Hn(X,A)
It follows that
Hn(X,x0)
x0
Hi(X,x0)=Hi(X)
i>0
i=0
H0(X,x0)
H0(X)
x0
The excision theorem says that removing a sufficiently nice subset
Z\subsetA
Hn(X,A)
A
V
X
A
Hn(X,A)
X/A
Relative homology readily extends to the triple
(X,Y,Z)
Z\subsetY\subsetX
One can define the Euler characteristic for a pair
Y\subsetX
\chi(X,Y)=\sumj=0n(-1)j\operatorname{rank}Hj(X,Y).
The exactness of the sequence implies that the Euler characteristic is additive, i.e., if
Z\subsetY\subsetX
\chi(X,Z)=\chi(X,Y)+\chi(Y,Z).
The
n
X
x0
H | |
n,\{x0\ |
Hn(X,X\setminus\{x0\})
X
x0
One easy example of local homology is calculating the local homology of the cone (topology) of a space at the origin of the cone. Recall that the cone is defined as the quotient space
CX=(X x I)/(X x \{0\}),
X x \{0\}
x0=0
[X x 0]
H | |
*,\{x0\ |
CX
x0
CX
H*(X)
CX\setminus\{x0\}
X
\begin{align} \to&Hn(CX\setminus\{x0\})\toHn(CX)\to
H | |
n,\{x0\ |
\begin{align} H | |
n,\{x0\ |
CX\setminus\{x0\}
X
X
Another computation for local homology can be computed on a point
p
M
K
p
Dn=\{x\in\Rn:|x|\leq1\}
U=M\setminusK
\begin{align} Hn(M,M\setminus\{p\})&\congHn(M\setminusU,M\setminus(U\cup\{p\}))\\ &=Hn(K,K\setminus\{p\}), \end{align}
Dn
Dn\setminus\{0\}\simeqSn-1
n) | |
H | |
k(D |
\cong\begin{cases} \Z&k=0\\ 0&k ≠ 0, \end{cases}
(D,D\setminus\{0\})
0\toHn,\{0\
Hn,\{0\
Just as in absolute homology, continuous maps between spaces induce homomorphisms between relative homology groups. In fact, this map is exactly the induced map on homology groups, but it descends to the quotient.
Let
(X,A)
(Y,B)
A\subseteqX
B\subseteqY
f\colonX\toY
f\#\colonCn(X)\toCn(Y)
f(A)\subseteqB
f\#(Cn(A))\subseteqCn(B)
\begin{align} \piX&:Cn(X)\longrightarrowCn(X)/Cn(A)\\ \piY&:Cn(Y)\longrightarrowCn(Y)/Cn(B)\\ \end{align}
be the natural projections which take elements to their equivalence classes in the quotient groups. Then the map
\piY\circf\#\colonCn(X)\toCn(Y)/Cn(B)
f\#(Cn(A))\subseteqCn(B)=\ker\piY
\varphi\colonCn(X)/Cn(A)\toCn(Y)/Cn(B)
Chain maps induce homomorphisms between homology groups, so
f
f*\colonHn(X,A)\toHn(Y,B)
One important use of relative homology is the computation of the homology groups of quotient spaces
X/A
A
X
A
A
\tildeHn(X/A)
Hn(X,A)
Sn
Sn=Dn/Sn-1
… \to\tilde
n) → | |
H | |
n(D |
n,S | |
H | |
n(D |
n-1) → \tildeHn-1(Sn-1) → \tildeHn-1(Dn)\to … .
Because the disk is contractible, we know its reduced homology groups vanish in all dimensions, so the above sequence collapses to the short exact sequence:
0 →
n,S | |
H | |
n(D |
n-1) → \tildeHn-1(Sn-1) → 0.
Therefore, we get isomorphisms
n,S | |
H | |
n(D |
n-1)\cong\tildeHn-1(Sn-1)
n,S | |
H | |
n(D |
n-1)\cong\Z
Sn-1
Dn
n,S | |
H | |
n(D |
n-1)\cong\tilde
n)\cong | |
H | |
n(S |
\Z
Another insightful geometric example is given by the relative homology of
(X=\Complex*,D=\{1,\alpha\})
\alpha ≠ 0,1
\begin{align} 0&\toH1(D)\toH1(X)\toH1(X,D)\\ &\toH0(D)\toH0(X)\toH0(X,D) \end{align} = \begin{align} 0&\to0\to\Z\toH1(X,D)\\ &\to\Z ⊕ \to\Z\to0 \end{align}
H1(X,D)
\sigma
\phi\colon\Z\toH1(X,D)
0\to\operatorname{coker}(\phi)\to\Z ⊕ \to\Z\to0
\Z
1
[1,\alpha]
\partial([1,\alpha])=[\alpha]-[1]
i.e., the boundary
\partial\colonCn(X)\toCn-1(X)
Cn(A)
Cn-1(A)
. Algebraic topology. Allen Hatcher. 2002. Cambridge University Press. 9780521795401. Cambridge, UK. 45420394.