In algebra, the local criterion for flatness gives conditions one can check to show flatness of a module.
Given a commutative ring A, an ideal I and an A-module M, suppose either
ak{a}
capnIn(ak{a} ⊗ M)=0
Then the following are equivalent:
The assumption that “A is a Noetherian ring” is used to invoke the Artin–Rees lemma and can be weakened; see
Following SGA 1, Exposé IV, we first prove a few lemmas, which are interesting themselves. (See also this blog post by Akhil Mathew for a proof of a special case.)
Proof: The equivalence of the first two can be seen by studying the Tor spectral sequence. Here is a direct proof: if 1. is valid and
N\hookrightarrowN'
B
A | |
\operatorname{Tor} | |
1(C, |
M)=0\toN ⊗ AM\toN' ⊗ AM
N ⊗ AM\simeqN ⊗ B(B ⊗ AN)
N'
0\toR\toF\toX\to0
A | |
\operatorname{Tor} | |
1(F, |
M)=0\to
A | |
\operatorname{Tor} | |
1(X, |
M)\toR ⊗ AM\toF ⊗ AM
A(I | |
\operatorname{Tor} | |
1 |
nX/In+1X,M)=0
A(I | |
\operatorname{Tor} | |
1 |
n+1X,M)\to
A(I | |
\operatorname{Tor} | |
1 |
nX,M)\to0.
\square
Proof: The assumption implies that
In ⊗ M=InM
\operatorname{gr}I(A)
⊗ | |
A0 |
M0=
infty | |
⊕ | |
0 |
n) | |
(I | |
0 |
⊗ | |
A0 |
M0=
infty | |
⊕ | |
0 |
(In ⊗ AM)0=
infty | |
⊕ | |
0 |
(InM)0=\operatorname{gr}IM
For the second part, let
\alphai
0\to
A(A/I | |
\operatorname{Tor} | |
1 |
i,M)\toIi ⊗ M\toIiM\to0
\gammai:0\to0\toIi/Ii+1 ⊗ M\overset{\simeq}\toIiM/Ii+1M\to0
\alphai+1\to\alphai\to\gammai.
A(A/I | |
\operatorname{Tor} | |
1 |
i,M)=0,i>0
i
M
\square
Proof of the main statement.
2. ⇒ 1.
If
I
A(-, | |
\operatorname{Tor} | |
1 |
M)=0
M
A
ak{a}\subsetA
ak{a} ⊗ M\toM
k>0
0\toak{a}/(Ik\capak{a})\toA/Ik\toA/(ak{a}+Ik)\to0.
A(A/(ak{a}+ | |
\operatorname{Tor} | |
1 |
Ik),M)=0
Ik
A/(ak{a}+Ik)
M
0\toak{a}/(Ik\capak{a}) ⊗ M\toA/Ik ⊗ M=M/IkM
M
0\toIk\capak{a}\toak{a}\toak{a}/(Ik\capak{a})\to0
(Ik\capak{a}) ⊗ M\overset{f}\toak{a} ⊗ M\overset{g}\toak{a}/(Ik\capak{a}) ⊗ M\to0.
(Ik\capak{a}) ⊗ M\overset{f}\toak{a} ⊗ M\overset{g'}\toM/IkM.
Now, if
x
ak{a} ⊗ M\toM
x
\operatorname{ker}(g')=\operatorname{im}(f)=(Ik\capak{a}) ⊗ M
n>0
k>0
Ik\capak{a}\subsetInak{a}
\capnIn(ak{a} ⊗ M)=0
x=0
1. ⇒ 4.
4. ⇒ 3.
Since
(An)0=A0
M,A
Mn,An
Mn
An
3. ⇒ 2.
0\toI\toA\toA/I\to0
A(A/I, | |
\operatorname{Tor} | |
1 |
M)
I ⊗ M\toM
2. ⇒ 1.
\square
The local criterion can be used to prove the following:
Proof: Assume that
\widehat{l{O}y,
l{O}x\to\widehat{l{O}x}
ak{m}yl{O}x=ak{m}y\widehat{l{O}x}\capl{O}x=\widehat{ak{m}y}\widehat{l{O}x}\capl{O}x=\widehat{ak{m}x}\capl{O}x=ak{m}x
f
l{O}y\tol{O}x
Next, we show the converse: by the local criterion, for each n, the natural map
n+1 | |
ak{m} | |
y |
\to
n+1 | |
ak{m} | |
x |
l{O}y/ak{m}
n | |
y |
\tol{O}x/ak{m}
n | |
x |
\square
Mumford’s Red Book gives an extrinsic proof of the above fact (Ch. III, § 5, Theorem 3).
B. Conrad calls the next theorem the miracle flatness theorem.[1]