List of unsolved problems in physics explained

The following is a list of notable unsolved problems grouped into broad areas of physics.[1]

Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail.

There are still some questions beyond the Standard Model of physics, such as the strong CP problem, neutrino mass, matter–antimatter asymmetry, and the nature of dark matter and dark energy.[2] [3] Another problem lies within the mathematical framework of the Standard Model itself—the Standard Model is inconsistent with that of general relativity, to the point that one or both theories break down under certain conditions (for example within known spacetime singularities like the Big Bang and the centres of black holes beyond the event horizon).[4]

General physics

Quantum gravity

Quantum physics

Cosmology and general relativity

High-energy/particle physics

See also: Beyond the Standard Model.

Astronomy and astrophysics

See main article: List of unsolved problems in astronomy.

Nuclear physics

Fluid dynamics

Is it possible to make a theoretical model to describe the statistics of a turbulent flow (in particular, its internal structures)?

Condensed matter physics

Quantum computing and quantum information

Plasma physics

Biophysics

Foundations of physics

Problems solved in the past 30 years

General physics/quantum physics

Cosmology and general relativity

High-energy physics/particle physics

Astronomy and astrophysics

Nuclear physics

Rapidly solved problems

See also

External links

Notes and References

  1. Book: Ginzburg, Vitaly L.. The physics of a lifetime : reflections on the problems and personalities of 20th century physics. limited. 2001. Springer. Berlin. 978-3-540-67534-1. 3–200.
  2. The Unknown Universe: The Origin of the Universe, Quantum Gravity, Wormholes, and Other Things Science Still Can't Explain . Proceedings of the Royal Society of London, Series A. 456. 1999. 1685. Hammond. Richard. 1 May 2008.
  3. Web site: Womersley . J. . February 2005 . Beyond the Standard Model . Symmetry Magazine . 23 November 2010 . https://web.archive.org/web/20071017160238/http://www.symmetrymagazine.org/pdfs/200502/beyond_the_standard_model.pdf . 17 October 2007 . dead .
  4. News: Overbye . Dennis . Dennis Overbye . Don't Expect a 'Theory of Everything' to Explain It All - Not even the most advanced physics can reveal everything we want to know about the history and future of the cosmos, or about ourselves. . 11 September 2023 . . live . https://archive.today/20230911043212/https://www.nytimes.com/2023/09/11/science/space/astronomy-universe-simulations.html . 11 September 2023 . 11 September 2023 .
  5. Web site: Alcohol constrains physical constant in the early universe. Phys Org. 25 March 2015. 13 December 2012. 2 April 2015. https://web.archive.org/web/20150402122447/http://phys.org/news/2012-12-alcohol-constrains-physical-constant-early.html. live.
  6. Bagdonaite. J.. Jansen. P.. Henkel. C.. Bethlem. H. L.. Menten. K. M.. Ubachs. W.. A Stringent Limit on a Drifting Proton-to-Electron Mass Ratio from Alcohol in the Early Universe. Science. 13 December 2012. 339. 6115. 46–48. 10.1126/science.1224898. 2013Sci...339...46B. 23239626. 1871/39591. 716087. 10 January 2020. 17 January 2023. https://web.archive.org/web/20230117023340/https://research.vu.nl/en/publications/a-stringent-limit-on-a-drifting-proton-to-electron-mass-ratio-fro. live. free.
  7. News: Sokal . Alan . 22 July 1996 . Don't Pull the String Yet on Superstring Theory . New York Times . live . 17 February 2017 . https://web.archive.org/web/20081207212917/https://query.nytimes.com/gst/fullpage.html?res=9D0DE7DB1639F931A15754C0A960958260 . 7 December 2008.
  8. Peres. Asher. Asher Peres. Terno. Daniel R.. 2004. Quantum information and relativity theory. Reviews of Modern Physics. 76. 1. 93–123. quant-ph/0212023. 10.1103/revmodphys.76.93. 2004RvMP...76...93P. 7481797.
  9. News: Joshi. Pankaj S.. Do Naked Singularities Break the Rules of Physics?. Scientific American. January 2009. https://archive.today/20120525044855/http://www.sciam.com/article.cfm?id=naked-singularities. dead. 2012-05-25.
  10. Harlow . Daniel . 2018 . TASI Lectures on the Emergence of Bulk Physics in AdS/CFT . Proceedings of Science . TASI2017 . 002 . 10.22323/1.305.0002. free . 1721.1/121453 . free .
  11. Book: Isham, C. J.. Integrable Systems, Quantum Groups, and Quantum Field Theories. 1993. Springer, Dordrecht. 9789401048743. NATO ASI Series. 157–287. en. Canonical Quantum Gravity and the Problem of Time. gr-qc/9210011. 10.1007/978-94-011-1980-1_6. 116947742. Christopher Isham.
  12. Web site: Yang-Mills & The Mass Gap . 2024-04-09 . . en-US.
  13. Book: Rees, Martin . Just Six Numbers: The Deep Forces That Shape The Universe . 3 May 2001 . Basic Books; First American edition . 9780465036721 . New York, New York . 4 . en-us . limited.
  14. Gribbin, J. and Rees, M., Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology, pp. 7, 269. 1989,
  15. Book: Davis, Paul . Cosmic Jackpot: Why Our Universe Is Just Right for Life . Orion Publications . 2007 . 978-0618592265 . New York . 2 . en-us.
  16. Web site: Podolsky. Dmitry. Top ten open problems in physics. NEQNET. 24 January 2013. https://web.archive.org/web/20121022112323/http://www.nonequilibrium.net/225-top-ten-open-problems-physics. 22 October 2012. dead.
  17. Web site: Quanta Magazine. 10 May 2020. 27 April 2020. https://web.archive.org/web/20200427235423/https://www.quantamagazine.org/neutrino-asymmetry-passes-critical-threshold-20200415/. live.
  18. Abdalla . Elcio . Abellán . Guillermo Franco . Aboubrahim . Amin . 11 March 2022 . Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies . Journal of High Energy Astrophysics . 34 . 49 . 2203.06142v1 . 2022JHEAp..34...49A . 10.1016/j.jheap.2022.04.002 . 247411131.
  19. Krishnan . Chethan . Mohayaee . Roya . Colgáin . Eoin Ó . Sheikh-Jabbari . M. M. . Yin . Lu . Does Hubble Tension Signal a Breakdown in FLRW Cosmology? . Classical and Quantum Gravity . 16 September 2021 . 38 . 18 . 184001 . 10.1088/1361-6382/ac1a81 . 2105.09790 . 2021CQGra..38r4001K . 234790314 . 0264-9381.
  20. Ellis. G. F. R.. Dark energy and inhomogeneity. Journal of Physics: Conference Series. 189. 10.1088/1742-6596/189/1/012011. 2009. 1. 012011. 2009JPhCS.189a2011E. 250670331 . free.
  21. Evidence for anisotropy of cosmic acceleration. Jacques. Colin. Roya. Mohayaee. Mohamed. Rameez. Subir. Sarkar. Astronomy and Astrophysics. 631. 10.1051/0004-6361/201936373. 1808.04597. 20 November 2019. L13. 2019A&A...631L..13C. 208175643. 25 March 2022. 10 March 2022. https://web.archive.org/web/20220310140316/https://www.aanda.org/articles/aa/full_html/2019/11/aa36373-19/aa36373-19.html. live.
  22. Why the Cosmological constant is so small and positive. Steinhardt . P. . Turok . N. . amp . 2006 . Science. 312 . 5777 . 1180–1183. 10.1126/science.1126231. astro-ph/0605173 . 2006Sci...312.1180S . 16675662. 14178620 .
  23. Wang. Qingdi . Zhu . Zhen . Unruh . William G. . William Unruh . 11 May 2017 . How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. . 95 . 10 . 103504 . 1703.00543 . 10.1103/PhysRevD.95.103504 . 2017PhRvD..95j3504W . 119076077.
  24. News: 13 things that do not make sense. Michael. Brooks. New Scientist. Issue 2491. 19 March 2005. 7 March 2011. 23 June 2015. https://web.archive.org/web/20150623175524/https://www.newscientist.com/article/mg18524911.600-13-things-that-do-not-make-sense.html. live.
  25. Dirac . Paul . Paul Dirac . 1931 . Quantised singularities in the electromagnetic field . Proceedings of the Royal Society A . 133 . 821 . 60 . 10.1098/rspa.1931.0130 . 1931RSPSA.133...60D . 25 December 2010 . 20 May 2011 . https://web.archive.org/web/20110520041631/http://users.physik.fu-berlin.de/~kleinert/files/dirac1931.pdf . live .
  26. Wolchover . Natalie . 13 February 2018 . Neutron lifetime puzzle deepens, but no dark matter seen . . 31 July 2018 . 30 July 2018 . https://web.archive.org/web/20180730080707/https://www.quantamagazine.org/neutron-lifetime-puzzle-deepens-but-no-dark-matter-seen-20180213/ . live .
  27. Li . Tianjun . Dimitri V. . Nanopoulos . Joel W. . Walker . 2011 . Elements of fast proton decay . 10.1016/j.nuclphysb.2010.12.014 . Nuclear Physics B . 846 . 1 . 43–99 . 1003.2570 . 2011NuPhB.846...43L . 119246624.
  28. Hansson . Johan . 2010 . The "proton spin crisis" – a quantum query . Progress in Physics . 3 . 23 . 14 April 2012 . dead . https://web.archive.org/web/20120504134027/http://www.ptep-online.com/index_files/2010/PP-22-08.PDF . 4 May 2012 .
  29. 10.4249/scholarpedia.11419. Grand unification. Scholarpedia. 7. 10. 11419. 2012. Langacker. Paul. 2012SchpJ...711419L. free.
  30. Book: Wu . T.-Y. . Hwang . W.-Y. Pauchy . Woei-Yann Pauchy Hwang --> . 1991 . Relativistic Quantum Mechanics and Quantum Fields . . 978-981-02-0608-6.
  31. Blumhofer, A. . Hutter, M. . 1997 . Family structure from periodic solutions of an improved gap equation . Nuclear Physics . B484 . 1 . 80–96 . 10.1016/S0550-3213(96)00644-X . 1997NuPhB.484...80B . 10.1.1.343.783.
  32. Web site: India-based Neutrino Observatory (INO) . Tata Institute of Fundamental Research . 14 April 2012 . 26 April 2012 . https://web.archive.org/web/20120426214134/http://www.ino.tifr.res.in/ino/ . live .
  33. Nakamura . K. . etal . . 2010 . 2011 Review of Particle Physics . J. Phys. G . 37 . 7A . 075021 . 10.1088/0954-3899/37/7A/075021 . free . 2010JPhG...37g5021N . 25 April 2012 . 23 April 2012 . https://web.archive.org/web/20120423081050/http://pdg.lbl.gov/2011/reviews/contents_sports.html . live . 10481/34593 . free .
  34. Mention . G. . Fechner . M. . Lasserre . Th. . Mueller . Th.A. . Lhuillier . D. . Cribier . M. . Letourneau . A. . 2011-04-29 . Reactor antineutrino anomaly . Physical Review D . 83 . 7 . 073006 . 10.1103/PhysRevD.83.073006 . 2011PhRvD..83g3006M . 14401655 . 1101.2755 . 2 October 2021 . 17 January 2023 . https://web.archive.org/web/20230117023333/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.83.073006 . live .
  35. Fallot . Muriel . 2017-06-19 . Getting to the bottom of an antineutrino anomaly . Physics . 10 . 66 . en . 10.1103/Physics.10.66 . 2017PhyOJ..10...66F . 2 October 2021 . 2 October 2021 . https://web.archive.org/web/20211002140625/https://physics.aps.org/articles/v10/66 . live . free .
  36. Thomas . Blum . Achim . Denig . Ivan . Logashenko . Eduardo . de Rafael . B. Lee . Roberts . Thomas . Teubner . Graziano . Venanzoni . 2013 . The muon theory value: Present and future . hep-ph . 1311.2198 .
  37. Web site: Muir, H. . 2 July 2003 . Pentaquark discovery confounds skeptics . . 8 January 2010 . 10 October 2008 . https://web.archive.org/web/20081010182322/http://www.newscientist.com/article/dn3903-pentaquark-discovery-confounds-sceptics.html . live .
  38. News: Amit, G. . 14 July 2015 . Pentaquark discovery at LHC shows long-sought new form of matter . . 14 July 2015 . 8 November 2020 . https://web.archive.org/web/20201108163418/https://www.newscientist.com/article/dn27892-pentaquark-discovery-at-lhc-shows-long-sought-new-form-of-matter/ . live .
  39. Elliott . S. R. . Gavrin . V. N. . Haxton . W. C. . 2024-01-01 . The gallium anomaly . Progress in Particle and Nuclear Physics . 134 . 104082 . 10.1016/j.ppnp.2023.104082 . 2306.03299 . 2024PrPNP.13404082E . 0146-6410.
  40. 1406.4228. Michael J. Thompson. Grand Challenges in the Physics of the Sun and Sun-like Stars. Frontiers in Astronomy and Space Sciences. 1. 1. 2014. 2014FrASS...1....1T. 10.3389/fspas.2014.00001. 1547625. free.
  41. Strohmayer. Tod E.. Mushotzky, Richard F.. Discovery of X-Ray Quasi-periodic Oscillations from an Ultraluminous X-Ray Source in M82: Evidence against Beaming. The Astrophysical Journal. 20 March 2003. 586. 1. L61–L64. 10.1086/374732. astro-ph/0303665 . 2003ApJ...586L..61S . 118992703.
  42. Titarchuk. Lev. Fiorito, Ralph. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole Sources: Observational Evidence of Two Phases and Phase Transition in Black Holes. The Astrophysical Journal. 10 September 2004. 612. 2. 988–999. 10.1086/422573. 25 January 2013. astro-ph/0405360. 2004ApJ...612..988T. 2060/20040182332. 4689535. dead. https://web.archive.org/web/20140203131257/http://159.226.72.19/share/reference/x-raybinary/Titarchuk-Fiorito04.pdf. 3 February 2014.
  43. 1202.0121. Shoji Kato. An Attempt to Describe Frequency Correlations among kHz QPOs and HBOs by Two-Armed Nearly Vertical Oscillations. Publications of the Astronomical Society of Japan. 64. 3. 62. 2012. 10.1093/pasj/64.3.62. 2012PASJ...64...62K. 118498018.
  44. Sarre . Peter J. . The diffuse interstellar bands: A major problem in astronomical spectroscopy . . 2006 . 238 . 1 . 1 . 10.1016/j.jms.2006.03.009 . 2006JMoSp.238....1S . astro-ph/0608113.
  45. The ESO Diffuse Interstellar Band Large Exploration Survey (EDIBLES) . The Messenger . 171 . 31 . . Cami . Jan . Cox . Nick L. J. . Farhang . Amin . Smoker . Jonathan . Elyajouri . Meriem . Lallement . Rosine . Rosine Lallement . Bacalla . Xavier . Bhatt . Neil H. . Bron . Emeric . Cordiner . Martin A. . de Koter . Alex . Ehrenfreund . Pascale . Pascale Ehrenfreund . Evans . Chris . Foing . Bernard . Bernard Foing . Javadi . Atefeh . Joblin . Christine . Christine Joblin . Kaper . Lex . Khosroshahi . Habib G. . Laverick . Mike . Le Petit . Franck . Linnartz . Harold . Marshall . Charlotte C. M. . Monreal-Ibero . Ana . Mulas . Giacomo . Roueff . Evelyne . Royer . Pierre . Salama . Farid . Sarre . Peter J. . Smith . Keith T. . Spaans . Marco . van Loon . Jacco T. . Wade . Gregg . 2018 . Gregg Wade . 10.18727/0722-6691/5066 . 2018Msngr.171...31C.
  46. Ferrarese. Laura. Merritt. David. David Merritt. A Fundamental Relation between Supermassive Black Holes and their Host Galaxies. The Astrophysical Journal. 539. 1. L9–L12. 2000. 10.1086/312838. astro-ph/0006053. 2000ApJ...539L...9F . 6508110.
  47. Web site: Open Questions in Physics. Baez. John C.. John C. Baez. March 2006. Usenet Physics FAQ. University of California, Riverside

    Department of Mathematics

    . 7 March 2011. 4 June 2011. https://web.archive.org/web/20110604154302/http://math.ucr.edu/home/baez/physics/General/open_questions.html. live.
  48. Web site: Scientists Find That Saturn's Rotation Period is a Puzzle. 28 June 2004. NASA. 22 March 2007. 29 August 2011. https://web.archive.org/web/20110829082445/http://www.nasa.gov/mission_pages/cassini/media/cassini-062804.html. live.
  49. 1998AJ....115.1693C. 1693–1716. The NRAO VLA Sky Survey. The Astronomical Journal. 115. 5. Condon. J. J.. Cotton. W. D.. Greisen. E. W.. Yin. Q. F.. Perley. R. A.. Taylor. G. B.. Broderick. J. J.. 1998. 10.1086/300337. 120464396 . free.
  50. 1110.6260. Singal. Ashok K.. Large peculiar motion of the solar system from the dipole anisotropy in sky brightness due to distant radio sources. The Astrophysical Journal. 742. 2. L23–L27. 2011. 10.1088/2041-8205/742/2/L23. 2011ApJ...742L..23S. 119117071.
  51. 10.1016/j.astropartphys.2014.06.004 . Dipole anisotropy in sky brightness and source count distribution in radio NVSS data . Astroparticle Physics . 61 . 1–11 . 2015 . Tiwari . Prabhakar . Kothari . Rahul . Naskar . Abhishek . Nadkarni-Ghosh . Sharvari . Jain . Pankaj . 1307.1947 . 2015APh....61....1T . 119203300 .
  52. 10.1093/mnras/stu2535. Dipole anisotropy in integrated linearly polarized flux density in NVSS data. Monthly Notices of the Royal Astronomical Society. 447. 3. 2658–2670. 2015. Tiwari. P.. Jain. P.. free . 1308.3970. 2015MNRAS.447.2658T. 118610706.
  53. 1998A&A...332..410H. 410–428. Evidence for very large-scale coherent orientations of quasar polarization vectors. Astronomy and Astrophysics. 332. Hutsemekers. D.. 1998.
  54. astro-ph/0012182. 381–387. 10.1051/0004-6361:20000443. Confirmation of the existence of coherent orientations of quasar polarization vectors on cosmological scales. Astronomy & Astrophysics. 367. 2. 2001. Hutsemékers. D.. Lamy. H.. 2001A&A...367..381H. 17157567.
  55. astro-ph/0301530. 394–402. 10.1111/j.1365-2966.2004.07169.x. Large-scale alignment of optical polarizations from distant QSOs using coordinate-invariant statistics. Monthly Notices of the Royal Astronomical Society. 347. 2. 2004. Jain. P.. Narain. G.. Sarala. S.. free. 2004MNRAS.347..394J. 14190653.
  56. astro-ph/0307282. Angelica de Oliveira-Costa. The significance of the largest scale CMB fluctuations in WMAP. Physical Review D. 69. 6. 063516. Tegmark. Max. Zaldarriaga. Matias. Hamilton. Andrew. 2004. 10.1103/PhysRevD.69.063516. 2004PhRvD..69f3516D. 119463060.
  57. 2004ApJ...605...14E. 14–20. Asymmetries in the Cosmic Microwave Background Anisotropy Field. The Astrophysical Journal. 605. 1. Eriksen. H. K.. Hansen. F. K.. Banday. A. J.. Górski. K. M.. Lilje. P. B.. 2004. 10.1086/382267. astro-ph/0307507. 15696508.
  58. 0708.2816. Pramoda Kumar Samal. Testing Isotropy of Cosmic Microwave Background Radiation. Monthly Notices of the Royal Astronomical Society. 385. 4. 1718–1728. Saha. Rajib. Jain. Pankaj. Ralston. John P.. 2008. 10.1111/j.1365-2966.2008.12960.x. free . 2008MNRAS.385.1718S. 988092.
  59. 0811.1639. Pramoda Kumar Samal. Signals of Statistical Anisotropy in WMAP Foreground-Cleaned Maps. Monthly Notices of the Royal Astronomical Society. 396. 511. 511–522. Saha. Rajib. Jain. Pankaj. Ralston. John P.. 2009. 10.1111/j.1365-2966.2009.14728.x. free . 2009MNRAS.396..511S. 16250321.
  60. 10.1051/0004-6361/201016276. New constraints on the chemical evolution of the solar neighbourhood and Galactic disc(s). Astronomy & Astrophysics. 530. A138. 2011. Casagrande. L.. Schönrich. R.. Asplund. M.. Cassisi. S.. Ramírez. I.. Meléndez. J.. Bensby. T.. Feltzing. S.. Sofia Feltzing . 2011A&A...530A.138C. 1103.4651. 56118016.
  61. Bensby. T.. Feltzing, S.. Sofia Feltzing . Lundström, I.. A possible age–metallicity relation in the Galactic thick disk?. Astronomy and Astrophysics. July 2004. 421. 3. 969–976. 10.1051/0004-6361:20035957. astro-ph/0403591 . 2004A&A...421..969B . 10469794.
  62. 2011sca..conf..280G. Open Issues in the Evolution of the Galactic Disks. Stellar Clusters & Associations: A RIA Workshop on Gaia. Proceedings. Granada. 280. Gilmore. G.. Asiri. H. M.. 2011.
  63. 2016MNRAS.455..987C. 10.1093/mnras/stv2320. Measuring the vertical age structure of the Galactic disc using asteroseismology and SAGA. Monthly Notices of the Royal Astronomical Society. 455. 1. 987–1007. 2015. Casagrande. L.. Silva Aguirre. V.. Schlesinger. K. J.. Stello. D.. Huber. D.. Serenelli. A. M.. Scho Nrich. R.. Cassisi. S.. Pietrinferni. A.. Hodgkin. S.. Milone. A. P.. Feltzing. S.. Sofia Feltzing . Asplund. M.. free . 1510.01376. 119113283.
  64. 1203.3551. Fields. Brian D.. The Primordial Lithium Problem. Annual Review of Nuclear and Particle Science. 61. 2011. 47–68. 2012. 10.1146/annurev-nucl-102010-130445. free. 2011ARNPS..61...47F. 119265528.
  65. 10.1016/j.physrep.2019.06.003. A living theory catalogue for fast radio bursts. Physics Reports. 821. 1–27. 2019. Platts. E.. Weltman. A.. Walters. A.. Tendulkar. S.P.. Gordin. J.E.B.. Kandhai. S.. 2019PhR...821....1P. 1810.05836. 119091423.
  66. Web site: Existence and Uniqueness of the Navier-Stokes Equation . Charles Fefferman . Clay Mathematics Institute . 29 April 2021 . 14 November 2020 . https://web.archive.org/web/20201114191149/http://www.claymath.org/sites/default/files/navierstokes.pdf . live .
  67. Aranson . Igor S. . Tsimring . Lev S. . 2006-06-01 . Patterns and collective behavior in granular media: Theoretical concepts . Reviews of Modern Physics . 78 . 2 . 641–692 . 10.1103/RevModPhys.78.641 . Yet despite major efforts by many groups, the theoretical description of granular systems remains largely a plethora of different, often contradictory concepts and approaches..
  68. Web site: Schlein . Benjamin . Graduate Seminar on Partial Differential Equations in the Sciences – Energy and Dynamics of Boson Systems . live . https://web.archive.org/web/20130504182433/http://www.hcm.uni-bonn.de/homepages/prof-dr-benjamin-schlein/teaching/graduate-seminar-on-pdes-in-the-sciences/ . 4 May 2013 . 23 April 2012 . Hausdorff Center for Mathematics.
  69. News: The Nature of Glass Remains Anything but Clear. The New York Times. 29 July 2008. Kenneth Chang. 17 February 2017. 14 September 2017. https://web.archive.org/web/20170914193149/https://www.nytimes.com/2008/07/29/science/29glass.html. live.
  70. P.W. Anderson. Science. 267. 1995. 1615–1616. Through the Glass Lightly. Philip Warren Anderson. 10.1126/science.267.5204.1615-e. 17808155. The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition.. 5204. 28052338.
  71. Book: Zaccone . A. . Theory of Disordered Solids . Lecture Notes in Physics . Springer . 2023 . 1015 . 10.1007/978-3-031-24706-4. 978-3-031-24705-7 . 259299183 . 1st.
  72. Pohl . R.O. . etc . etc . Low-temperature thermal conductivity and acoustic attenuation in amorphous solids . 2002 . Rev. Mod. Phys. . 74 . 991. 10.1080/14786437208229210.
  73. Leggett . A.J. . Amorphous materials at low temperatures: why are they so similar?. 1991 . Physica B . 169 . 1–4 . 322–327 . 10.1016/0921-4526(91)90246-B. 1991PhyB..169..322L .
  74. http://www.physorg.com/news187421719.html Cryogenic electron emission phenomenon has no known physics explanation
  75. Meyer. H. O.. Spontaneous electron emission from a cold surface. Europhysics Letters. 1 March 2010. 89. 5. 58001. 10.1209/0295-5075/89/58001. 2010EL.....8958001M. 122528463 . 20 April 2018. 20 February 2020. https://web.archive.org/web/20200220194241/https://zenodo.org/record/896477. live.
  76. Storey. B. D.. Szeri. A. J.. Water vapour, sonoluminescence and sonochemistry. . 8 July 2000. 456. 1999. 1685–1709. 10.1098/rspa.2000.0582. 2000RSPSA.456.1685S. 55030028.
  77. Wu. C. C.. Roberts. P. H.. A Model of Sonoluminescence. . 9 May 1994. 445. 1924. 323–349. 10.1098/rspa.1994.0064. 1994RSPSA.445..323W. 122823755.
  78. Feasibility of self-correcting quantum memory and thermal stability of topological order . . 326 . 10 . 1 October 2011 . 0003-4916 . 10.1016/j.aop.2011.06.001 . 2566–2633 . 1103.1885. 2011AnPhy.326.2566Y . Yoshida . Beni . 119611494 .
  79. Dean. Cory R.. 2015. Even denominators in odd places. Nature Physics. En. 11. 4. 298–299. 10.1038/nphys3298. 1745-2481. 2015NatPh..11..298D. 123159205 .
  80. Mukherjee. Prabir K.. Landau Theory of Nematic-Smectic-A Transition in a Liquid Crystal Mixture. Molecular Crystals & Liquid Crystals. 1998. 312. 1 . 157–164. 10.1080/10587259808042438. 1998MCLCA.312..157M .
  81. A. Yethiraj, "Recent Experimental Developments at the Nematic to Smectic-A Liquid Crystal Phase Transition", Thermotropic Liquid Crystals: Recent Advances, ed. A. Ramamoorthy, Springer 2007, chapter 8.
  82. Book: Norris, David J.. Electronic Structure in Semiconductors Nanocrystals: Optical Experiment (in Semiconductor and Metal Nanocrystals: Synthesis and Electronic and Optical Properties). The Problem Swept Under the Rug. 97. Klimov. Victor. 2003. CRC Press. 978-0-203-91326-0. https://books.google.com/books?id=sarqqnaw-7oC&pg=PA97. 18 October 2020. 27 April 2022. https://web.archive.org/web/20220427065508/https://books.google.com/books?id=sarqqnaw-7oC&pg=PA97. live.
  83. Lipa. J. A.. Nissen. J. A.. Stricker. D. A.. Swanson. D. R.. Chui. T. C. P.. 14 November 2003. Specific heat of liquid helium in zero gravity very near the lambda point. Physical Review B. 68. 17. 174518. 10.1103/PhysRevB.68.174518. 2003PhRvB..68q4518L. cond-mat/0310163. 55646571.
  84. Campostrini. Massimo. Hasenbusch. Martin. Pelissetto. Andrea. Vicari. Ettore. 6 October 2006. Theoretical estimates of the critical exponents of the superfluid transition in $^\mathrm$ by lattice methods. Physical Review B. 74. 14. 144506. 10.1103/PhysRevB.74.144506. cond-mat/0605083. 118924734.
  85. Hasenbusch. Martin. 26 December 2019. Monte Carlo study of an improved clock model in three dimensions. 1910.05916. Physical Review B. 100. 22. 224517. 10.1103/PhysRevB.100.224517. 2469-9950. 2019PhRvB.100v4517H. 204509042.
  86. Chester. Shai M.. Landry. Walter. Liu. Junyu. Poland. David. Simmons-Duffin. David. Su. Ning. Vichi. Alessandro. Carving out OPE space and precise $O(2)$ model critical exponents. Journal of High Energy Physics. 2020. 2020. 6. 142. 10.1007/JHEP06(2020)142. 1912.03324. 2020JHEP...06..142C. 208910721.
  87. Rychkov. Slava. 31 January 2020. Conformal bootstrap and the λ-point specific heat experimental anomaly. Journal Club for Condensed Matter Physics. en. 10.36471/JCCM_January_2020_02. free. 8 February 2020. 9 June 2020. https://web.archive.org/web/20200609002316/https://www.condmatjclub.org/?p=4037. live.
  88. Barton . G. . Scharnhorst . K. . 1993 . QED between parallel mirrors: light signals faster than c, or amplified by the vacuum . . 26 . 8 . 2037 . 1993JPhA...26.2037B . 10.1088/0305-4470/26/8/024. A more recent follow-up paper is Scharnhorst . K. . 1998 . The velocities of light in modified QED vacua . . 7 . 7–8 . 700–709 . hep-th/9810221 . 1998AnP...510..700S . 10.1002/(SICI)1521-3889(199812)7:7/8<700::AID-ANDP700>3.0.CO;2-K . 120489943.
  89. Web site: Ball . Phillip . 2021 . Major Quantum Computing Strategy Suffers Serious Setbacks . 2 September 2023 . Quanta Magazine.
  90. Web site: Skyrme . Tess . 2023-03-20 . The Status of Room-Temperature Quantum Computers . 2023-09-01 . EE Times Europe . en-US.
  91. Book: Shor, Peter . Visions in Mathematics, GAFA 2000 Special Volume: Part II . Birkhäuser Basel . 2000 . 978-3-0346-0425-3 . Alon N. . Modern Birkhäuser Classics . 816–838 . Quantum Information Theory: Results and Open Problems . 10.1007/978-3-0346-0425-3_9 . Bourgain J. . Connes A. . Gromov M. . Milman V. . http://www-math.mit.edu/~shor/papers/GAFA.pdf.
  92. F. Wagner . Plasma Physics and Controlled Fusion. 49. 12B. 2007. B1. A quarter-century of H-mode studies. 2007PPCF...49....1W . 10.1088/0741-3335/49/12B/S01 . 498401. https://web.archive.org/web/20190223094141/http://pdfs.semanticscholar.org/4300/b370108edb8203ef135047b55b1510772227.pdf . dead . 2019-02-23 . .
  93. Book: André Balogh . Rudolf A. Treumann . https://books.google.com/books?id=mR4_AAAAQBAJ . Physics of Collisionless Shocks: Space Plasma Shock Waves . 2013 . Section 7.4 The Injection Problem . 362 . Springer . 978-1-4614-6099-2 . 3 September 2015 . 17 January 2023 . https://web.archive.org/web/20230117023443/https://books.google.com/books?id=mR4_AAAAQBAJ . live .
  94. Goldstein. Melvyn L.. Major Unsolved Problems in Space Plasma Physics. Astrophysics and Space Science. 2001. 277. 1/2. 349–369. 10.1023/A:1012264131485. 2001Ap&SS.277..349G. 189821322.
  95. Dill . K. A. . MacCallum . J. L. . The Protein-Folding Problem, 50 Years On . Science . 338. 6110 . 2012 . 1042–1046 . 0036-8075 . 10.1126/science.1219021. 23180855 . 2012Sci...338.1042D . 5756068 .
  96. Book: Cabello, Adán. What is Quantum Information?. Cambridge University Press. 2017. 9781107142114. Lombardi. Olimpia. Olimpia Lombardi. 138–143. Interpretations of quantum theory: A map of madness. 1509.04711. 2015arXiv150904711C. Fortin. Sebastian. Holik. Federico. López. Cristian. 10.1017/9781316494233.009. 118419619.
  97. Wiseman. Howard. Howard M. Wiseman. 2014. The Two Bell's Theorems of John Bell. Journal of Physics A: Mathematical and Theoretical. en. 47. 42. 424001. 10.1088/1751-8113/47/42/424001. 1751-8121. 1402.0351. 2014JPhA...47P4001W. 119234957.
  98. Fuchs. Christopher A.. Mermin. N. David. N. David Mermin. Schack. Rüdiger. 2014. An introduction to QBism with an application to the locality of quantum mechanics. American Journal of Physics. 82. 8. 749. 1311.5253. 10.1119/1.4874855. 2014AmJPh..82..749F. QBism. 56387090.
  99. Hensen, B.. etal. 21 October 2015. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature. 526. 7575. 682–686. 1508.05949. 2015Natur.526..682H. 10.1038/nature15759. 26503041. 205246446.
  100. News: Markoff. Jack. 21 October 2015. Sorry, Einstein. Quantum Study Suggests 'Spooky Action' Is Real. New York Times. 21 October 2015. 31 July 2019. https://web.archive.org/web/20190731224443/https://www.nytimes.com/2015/10/22/science/quantum-theory-experiment-said-to-prove-spooky-interactions.html. live.
  101. Giustina, M.. etal. 16 December 2015. Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons. Physical Review Letters. 115. 25. 250401. 1511.03190. 2015PhRvL.115y0401G. 10.1103/PhysRevLett.115.250401. 26722905. 13789503.
  102. Shalm, L. K.. etal. 16 December 2015. Strong Loophole-Free Test of Local Realism. Physical Review Letters. 115. 25. 250402. 1511.03189. 2015PhRvL.115y0402S. 10.1103/PhysRevLett.115.250402. 5815856. 26722906.
  103. Web site: Einstein papers at the Instituut-Lorentz. 30 April 2016. 19 May 2015. https://web.archive.org/web/20150519023226/http://www.lorentz.leidenuniv.nl/history/Einstein_archive/. live.
  104. Castelvecchi. Davide. Witze. Witze. 11 February 2016. Einstein's gravitational waves found at last. Nature News. 10.1038/nature.2016.19361. 182916902. 11 February 2016. 24 December 2018. https://web.archive.org/web/20181224230203/http://www.nature.com/news/einstein-s-gravitational-waves-found-at-last-1.19361. live.
  105. B. P. Abbott. 2016. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters. 116. 6. 061102. 1602.03837. 2016PhRvL.116f1102A. 10.1103/PhysRevLett.116.061102. 26918975. 124959784. LIGO Scientific Collaboration and Virgo Collaboration.
  106. Web site: Gravitational waves detected 100 years after Einstein's prediction. 11 February 2016. www.nsf.gov. National Science Foundation. 19 June 2020. https://web.archive.org/web/20200619020139/https://www.nsf.gov/news/news_summ.jsp?cntn_id=137628. live.
  107. Pretorius. Frans. 2005. Evolution of Binary Black-Hole Spacetimes. Physical Review Letters. 95. 12. 121101. gr-qc/0507014. 2005PhRvL..95l1101P. 10.1103/PhysRevLett.95.121101. 16197061. 24225193. Campanelli. M.. Lousto. C. O.. Marronetti. P.. Zlochower. Y.. 2006. Accurate Evolutions of Orbiting Black-Hole Binaries without Excision. Physical Review Letters. 96. 11. 111101. gr-qc/0511048. 2006PhRvL..96k1101C. 10.1103/PhysRevLett.96.111101. 16605808. 5954627. Baker. John G.. Centrella. Joan. Joan Centrella. Choi. Dae-Il. Koppitz. Michael. Van Meter. James. 2006. Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes. Physical Review Letters. 96. 11. 111102. gr-qc/0511103. 2006PhRvL..96k1102B. 10.1103/PhysRevLett.96.111102. 16605809. 23409406.
  108. R. Aaij et al. (LHCb collaboration). 2015. Observation of J/ψp resonances consistent with pentaquark states in Λ→J/ψKp decays. Physical Review Letters. 115. 7. 072001. 1507.03414. 2015PhRvL.115g2001A. 10.1103/PhysRevLett.115.072001. 26317714. 119204136.
  109. Web site: Higgs. Peter. 24 November 2010. My Life as a Boson. dead. https://web.archive.org/web/20140501135924/http://www.kcl.ac.uk/nms/depts/physics/news/events/MyLifeasaBoson.pdf. 1 May 2014. 17 January 2013. Talk given by Peter Higgs at King's College, London, 24 November 2010, expanding on a paper originally presented in 2001. – the original 2001 paper can be found at: Book: 2001 A Spacetime Odyssey: Proceedings of the Inaugural Conference of the Michigan Center for Theoretical Physics, Michigan, USA, 21–25 May 2001. World Scientific. 2003. 978-9812382313. Duff and Liu. 86–88. 17 January 2013. year of publication. 27 April 2022. https://web.archive.org/web/20220427064048/https://books.google.com/books?id=ONhnbpq00xIC&q=2001:+A+Space+Time+Odyssey++%22life+as+a+boson%22&pg=PR11. live.
  110. Kouveliotou. Chryssa. Meegan. Charles A.. Fishman. Gerald J.. Bhat. Narayana P.. Briggs. Michael S.. Koshut. Thomas M.. Paciesas. William S.. Pendleton. Geoffrey N.. 1993. Identification of two classes of gamma-ray bursts. The Astrophysical Journal. 413. L101. 1993ApJ...413L.101K. 10.1086/186969.
  111. News: Cho. Adrian. 16 October 2017. Merging neutron stars generate gravitational waves and a celestial light show. Science. 16 October 2017. 30 October 2021. https://web.archive.org/web/20211030182044/https://www.science.org/content/article/merging-neutron-stars-generate-gravitational-waves-and-celestial-light-show. live.
  112. Casttelvecchi. Davide. 25 August 2017. Rumours swell over new kind of gravitational-wave sighting. Nature News. 10.1038/nature.2017.22482. 27 August 2017. 16 October 2017. https://web.archive.org/web/20171016192413/http://www.nature.com/news/rumours-swell-over-new-kind-of-gravitational-wave-sighting-1.22482. live.
  113. Shull, J. Michael, Britton D. Smith, and Charles W. Danforth. "The baryon census in a multiphase intergalactic medium: 30% of the baryons may still be missing." The Astrophysical Journal 759.1 (2012): 23.
  114. News: Half the universe's missing matter has just been finally found. en-US. New Scientist. 12 October 2017. 13 October 2017. https://web.archive.org/web/20171013235848/https://www.newscientist.com/article/2149742-half-the-universes-missing-matter-has-just-been-finally-found/. live.
  115. Nicastro. F.. Kaastra. J.. Krongold. Y.. Borgani. S.. Branchini. E.. Cen. R.. Dadina. M.. Danforth. C. W.. Elvis. M.. Fiore. F.. Gupta. A.. June 2018. Observations of the missing baryons in the warm–hot intergalactic medium. Nature. En. 558. 7710. 406–409. 1806.08395. 2018Natur.558..406N. 10.1038/s41586-018-0204-1. 0028-0836. 29925969. D.. L.. Mathur. S.. Mayya. D.. Paerels. Piro. Rosa-Gonzalez. Schaye. L.. Zappacosta. N.. Wijers. J.. Torres-Zafra. J. M.. Shull. J.. F.. 49347964.
  116. Cleveland. Bruce T.. Daily. Timothy. Davis, Jr.. Raymond. Distel. James R.. Lande. Kenneth. Lee. C. K.. Wildenhain. Paul S.. Ullman. Jack. 1998. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. The Astrophysical Journal. 496. 1. 505–526. 1998ApJ...496..505C. 10.1086/305343. free.
  117. Helled. Ravit. Galanti. Eli. Kaspi. Yohai. 2015. Saturn's fast spin determined from its gravitational field and oblateness. Nature. 520. 7546 . 202–204. 10.1038/nature14278. 25807487 . 1504.02561. 2015Natur.520..202H . 4468877 .
  118. Wilczek. Frank. Quantum Time Crystals. Physical Review Letters. 109. 16. 160401. 2012. 0031-9007. 10.1103/PhysRevLett.109.160401. 23215056. 1202.2539. 2012PhRvL.109p0401W. 1312256.
  119. Shapere. Alfred. Wilczek. Frank. Classical Time Crystals. Physical Review Letters. 109. 16. 160402. 2012. 0031-9007. 10.1103/PhysRevLett.109.160402. 23215057. 2012PhRvL.109p0402S. 1202.2537. 4506464.
  120. Khemani. Vedika. Lazarides. Achilleas. Moessner. Roderich. Sondhi. S. L.. Phase Structure of Driven Quantum Systems. Physical Review Letters. 21 June 2016. 116. 25. 250401. 10.1103/PhysRevLett.116.250401. 27391704. 2016PhRvL.116y0401K. 1508.03344. 883197.
  121. Else. Dominic V.. Bauer. Bela. Nayak. Chetan. Floquet Time Crystals. Physical Review Letters. 25 August 2016. 117. 9. 090402. 10.1103/PhysRevLett.117.090402. 27610834. 2016PhRvL.117i0402E. 1603.08001. 1652633.
  122. Yao. N. Y.. Potter. A. C.. Potirniche. I.-D.. Vishwanath. A.. Discrete Time Crystals: Rigidity, Criticality, and Realizations. Physical Review Letters. 118. 3. 030401. 2017. 0031-9007. 10.1103/PhysRevLett.118.030401. 28157355. 1608.02589. 2017PhRvL.118c0401Y. 206284432. . 21 November 2021. 24 June 2021. https://web.archive.org/web/20210624202827/https://physics.aps.org/featured-article-pdf/10.1103/PhysRevLett.118.030401. live.
  123. Observation of a discrete time crystal . Nature . 8 March 2017 . Zhang, J. . etal . 10.1038/nature21413 . 28277505 . 543 . 7644 . 217–220. 1609.08684 . 2017Natur.543..217Z . 4450646 .
  124. Observation of discrete time-crystalline order in a disordered dipolar many-body system . Nature . 8 March 2017 . Choi, S. . etal . 10.1038/nature21426 . 28277511 . 5349499 . 543 . 7644 . 221–225. 1610.08057 . 2017Natur.543..221C .
  125. 10.1093/mnrasl/slv060. Photon underproduction crisis: Are QSOs sufficient to resolve it?. Monthly Notices of the Royal Astronomical Society: Letters. 451. L30–L34. 2015. Khaire. V.. Srianand. R.. free . 1503.07168. 2015MNRAS.451L..30K. 119263441.
  126. 1999A&A...341L..71V. HIPPARCOS distance calibrations for 9 open clusters. Astronomy and Astrophysics. 341. L71. Van Leeuwen. Floor. 1999.
  127. 1203.4945. XHIP-II: Clusters and associations. Astronomy Letters. 38. 11. 681–693. 2012. Charles Francis. Erik Anderson. 10.1134/S1063773712110023. 2012AstL...38..681F. 119285733.
  128. OPERA collaboration . Measurement of the neutrino velocity with the OPERA detector in the CNGS beam . Journal of High Energy Physics . 2012 . 10 . 93 . 12 July 2012 . 1109.4897. 10.1007/JHEP10(2012)093 . 2012JHEP...10..093A. 17652398 .
  129. Turyshev . S. . Toth . V. . Kinsella . G. . Lee . S. C. . Lok . S. . Ellis . J. . Support for the Thermal Origin of the Pioneer Anomaly . Physical Review Letters . 108 . 24 . 241101 . 2012 . 1204.2507. 10.1103/PhysRevLett.108.241101 . 23004253 . 2012PhRvL.108x1101T . 2368665 .
  130. News: Overbye. Dennis. Mystery Tug on Spacecraft Is Einstein's 'I Told You So'. 24 January 2014. The New York Times. 23 July 2012. 27 August 2017. https://web.archive.org/web/20170827000258/http://www.nytimes.com/2012/07/24/science/mystery-tug-on-pioneer-10-and-11-probes-is-einsteins-i-told-you-so.html. live.