List of uniform polyhedra explained

In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.

Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.

This list includes these:

It was proven in that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge. This is a degenerate uniform polyhedron rather than a uniform polyhedron, because some pairs of edges coincide.

Not included are:

Indexing

Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:

Names of polyhedra by number of sides

There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube.

Table of polyhedra

The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.

There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.

Convex uniform polyhedra

NamePictureVertex
type
Wythoff
symbol
Sym.C#W#U#K#Vert.EdgesFacesFaces by type
Tetrahedron
3.3.3
3 2 3TdC15W001U01K064644
Triangular prism
3.4.4
2 3 2D3hC33aU76aK01a6952
+3
Truncated tetrahedron
3.6.6
2 3 3TdC16W006U02K07121884
+4
Truncated cube
3.8.8
2 3 4OhC21W008U09K142436148
+6
Truncated dodecahedron
3.10.10
2 3 5IhC29W010U26K3160903220
+12
Cube
4.4.4
3 2 4OhC18W003U06K1181266
Pentagonal prism
4.4.5
2 5 2D5hC33bU76bK01b101575
+2
Hexagonal prism
4.4.6
2 6 2D6hC33cU76cK01c121886
+2
Heptagonal prism
4.4.7
2 7 2D7hC33dU76dK01d142197
+2
Octagonal prism
4.4.8
2 8 2D8hC33eU76eK01e1624108
+2
Enneagonal prism
4.4.9
2 9 2D9hC33fU76fK01f1827119
+2
Decagonal prism
4.4.10
2 10 2D10hC33gU76gK01g20301210
+2
Hendecagonal prism
4.4.11
2 11 2D11hC33hU76hK01h22331311
+2
Dodecagonal prism
4.4.12
2 12 2D12hC33iU76iK01i24361412
+2
Truncated octahedron
4.6.6
2 4 3OhC20W007U08K132436146
+8
Truncated cuboctahedron
4.6.8
2 3 4 OhC23W015U11K1648722612
+8
+6
Truncated icosidodecahedron
4.6.10
2 3 5 IhC31W016U28K331201806230
+20
+12
Dodecahedron
5.5.5
3 2 5IhC26W005U23K2820301212
Truncated icosahedron
5.6.6
2 5 3IhC27W009U25K3060903212
+20
Octahedron
3.3.3.3
4 2 3OhC17W002U05K1061288
Square antiprism
3.3.3.4
2 2 4D4dC34aU77aK02a816108
+2
Pentagonal antiprism
3.3.3.5
2 2 5D5dC34bU77bK02b10201210
+2
Hexagonal antiprism
3.3.3.6
2 2 6D6dC34cU77cK02c12241412
+2
Heptagonal antiprism
3.3.3.7
2 2 7D7dC34dU77dK02d14281614
+2
Octagonal antiprism
3.3.3.8
2 2 8D8dC34eU77eK02e16321816
+2
Enneagonal antiprism
3.3.3.9
2 2 9D9dC34fU77fK02f18362018
+2
Decagonal antiprism
3.3.3.10
2 2 10D10dC34gU77gK02g20402220
+2
Hendecagonal antiprism
3.3.3.11
2 2 11D11dC34hU77hK02h22442422
+2
Dodecagonal antiprism
3.3.3.12
2 2 12D12dC34iU77iK02i24482624
+2
Cuboctahedron
3.4.3.4
2 3 4OhC19W011U07K121224148
+6
Rhombicuboctahedron
3.4.4.4
3 4 2OhC22W013U10K152448268
+(6+12)
Rhombicosidodecahedron
3.4.5.4
3 5 2IhC30W014U27K32601206220
+30
+12
Icosidodecahedron
3.5.3.5
2 3 5IhC28W012U24K2930603220
+12
Icosahedron
3.3.3.3.3
5 2 3IhC25W004U22K2712302020
Snub cube
3.3.3.3.4
2 3 4OC24W017U12K17246038(8+24)
+6
Snub dodecahedron
3.3.3.3.5
2 3 5IC32W018U29K346015092(20+60)
+12

Uniform star polyhedra

The forms containing only convex faces are listed first, followed by the forms with star faces. Again infinitely many prisms and antiprisms exist; they are listed here up to the 8-sided ones.

The uniform polyhedra 3 3,, 3, 3, and (3) have some faces occurring as coplanar pairs. (Coxeter et al. 1954, pp. 423, 425, 426; Skilling 1975, p. 123)

NameImageWyth symVert. figSym.C#W#U#K#Vert.EdgesFacesChiOrient- able?Dens.Faces by type
Octahemioctahedron 3 3 6..6.3OhC37W068U03K081224120Yes 8+4
Tetrahemihexahedron 3 2 4..4.3TdC36W067U04K0961271No 4+3
Cubohemioctahedron 4 3 6..6.4OhC51W078U15K20122410−2No 6+4
Great dodecahedron 2 5 (5.5.5.5.5)/2IhC44W021U35K40123012−6Yes312
Great icosahedron 2 3 (3.3.3.3.3)/2IhC69W041U53K581230202Yes720
Great ditrigonal icosidodecahedron 3 5 (5.3.5.3.5.3)/2IhC61W087U47K52206032−8Yes620+12
Small rhombihexahedron2 4 4.8..OhC60W086U18K23244818−6No 12+6
Small cubicuboctahedron 4 4 8..8.4OhC38W069U13K18244820−4Yes28+6+6
Nonconvex great rhombicuboctahedron 4 2 4..4.4OhC59W085U17K222448262Yes58+(6+12)
Small dodecahemidodecahedron 5 5 10..10.5IhC65W091U51K56306018−12No 12+6
Great dodecahemicosahedron 5 3 6..6.5IhC81W102U65K70306022−8No 12+10
Small icosihemidodecahedron 3 5 10..10.3IhC63W089U49K54306026−4No 20+6
Small dodecicosahedron3 5 10.6..IhC64W090U50K556012032−28No 20+12
Small rhombidodecahedron2 5 10.4..IhC46W074U39K446012042−18No 30+12
Small dodecicosidodecahedron 5 5 10..10.5IhC42W072U33K386012044−16Yes220+12+12
Rhombicosahedron2 3 6.4..IhC72W096U56K616012050−10No 30+20
Great icosicosidodecahedron 5 3 6..6.5IhC62W088U48K536012052−8Yes620+12+20
Pentagrammic prism2 2 .4.4D5hC33bU78aK03a101572Yes25+2
Heptagrammic prism (7/2)2 2 .4.4D7hC33dU78bK03b142192Yes27+2
Heptagrammic prism (7/3)2 2 .4.4D7hC33dU78cK03c142192Yes37+2
Octagrammic prism2 2 .4.4D8hC33eU78dK03d1624 102Yes38+2
Pentagrammic antiprism 2 2 .3.3.3D5hC34bU79aK04a1020122Yes210+2
Pentagrammic crossed-antiprism 2 2 .3.3.3D5dC35aU80aK05a1020122Yes310+2
Heptagrammic antiprism (7/2) 2 2 .3.3.3D7hC34dU79bK04b1428162Yes314+2
Heptagrammic antiprism (7/3) 2 2 .3.3.3D7dC34dU79cK04c1428162Yes314+2
Heptagrammic crossed-antiprism 2 2 .3.3.3D7hC35bU80bK05b1428162Yes414+2
Octagrammic antiprism 2 2 .3.3.3D8dC34eU79dK04d1632182Yes316+2
Octagrammic crossed-antiprism 2 2 .3.3.3D8dC35cU80cK05c1632182Yes516+2
Small stellated dodecahedron5 2 5IhC43W020U34K39123012−6Yes312
Great stellated dodecahedron3 2 3IhC68W022U52K572030122Yes712
Ditrigonal dodecadodecahedron3 5 (.5)3IhC53W080U41K46206024−16Yes412+12
Small ditrigonal icosidodecahedron3 3 (.3)3IhC39W070U30K35206032−8Yes220+12
Stellated truncated hexahedron2 3 ..3OhC66W092U19K242436142Yes78+6
Great rhombihexahedron2 4...OhC82W103U21K26244818−6No 12+6
Great cubicuboctahedron3 4 .3..4OhC50W077U14K19244820−4Yes48+6+6
Great dodecahemidodecahedron ...IhC86W107U70K75306018−12No 12+6
Small dodecahemicosahedron 3 6..6.IhC78W100U62K67306022−8No 12+10
Dodecadodecahedron2 5 (.5)2IhC45W073U36K41306024−6Yes312+12
Great icosihemidodecahedron 3 ...3IhC85W106U71K76306026−4No 20+6
Great icosidodecahedron2 3 (.3)2IhC70W094U54K593060322Yes720+12
Cubitruncated cuboctahedron 3 4 .6.8OhC52W079U16K21487220−4Yes48+6+6
Great truncated cuboctahedron 2 3 .4.OhC67W093U20K254872262Yes112+8+6
Truncated great dodecahedron2 5 10.10.IhC47W075U37K42609024−6Yes312+12
Small stellated truncated dodecahedron2 5 ..5IhC74W097U58K63609024−6Yes912+12
Great stellated truncated dodecahedron2 3 ..3IhC83W104U66K716090322Yes1320+12
Truncated great icosahedron2 3 6.6.IhC71W095U55K606090322Yes712+20
Great dodecicosahedron3 6...IhC79W101U63K686012032−28No 20+12
Great rhombidodecahedron2 4...IhC89W109U73K786012042−18No 30+12
Icosidodecadodecahedron 5 3 6..6.5IhC56W083U44K496012044−16Yes412+12+20
Small ditrigonal dodecicosidodecahedron 3 5 10..10.3IhC55W082U43K486012044−16Yes420+12+12
Great ditrigonal dodecicosidodecahedron3 5 .3..5IhC54W081U42K476012044−16Yes420+12+12
Great dodecicosidodecahedron 3 ...3IhC77W099U61K666012044−16Yes1020+12+12
Small icosicosidodecahedron 3 3 6..6.3IhC40W071U31K366012052−8Yes220+12+20
Rhombidodecadodecahedron 5 2 4..4.5IhC48W076U38K436012054−6Yes330+12+12
Nonconvex great rhombicosidodecahedron 3 2 4..4.3IhC84W105U67K7260120622Yes1320+30+12
Icositruncated dodecadodecahedron3 5 .6.10IhC57W084U45K5012018044−16Yes420+12+12
Truncated dodecadodecahedron2 5 .4.IhC75W098U59K6412018054−6Yes330+12+12
Great truncated icosidodecahedron2 3 .4.6IhC87W108U68K73120180622Yes1330+20+12
Snub dodecadodecahedron 2 5 3.3..3.5IC49W111U40K456015084−6Yes360+12+12
Inverted snub dodecadodecahedron 2 5 3..3.3.5IC76W114U60K656015084−6Yes960+12+12
Great snub icosidodecahedron 2 3 34.IC73W113U57K6260150922Yes7(20+60)+12
Great inverted snub icosidodecahedron 2 3 34.IC88W116U69K7460150922Yes13(20+60)+12
Great retrosnub icosidodecahedron 2 (34.)/2IC90W117U74K7960150922Yes37(20+60)+12
Great snub dodecicosidodecahedron 3 33..3.IC80W115U64K6960180104−16Yes10(20+60)+(12+12)
Snub icosidodecadodecahedron 3 5 33.5.3.IC58W112U46K5160180104−16Yes4(20+60)+12+12
Small snub icosicosidodecahedron 3 3 35.IhC41W110U32K3760180112−8Yes2(40+60)+12
Small retrosnub icosicosidodecahedron (35.)/2IhC91W118U72K7760180112−8Yes38(40+60)+12
Great dirhombicosidodecahedronnowrap 3 (4..4.3.4..4.)/2IhC92W119U75K8060240124−56No 40+60+24

Special case

NameImageWyth
sym
Vert.
fig
Sym.C#W#U#K#Vert.EdgesFacesChiOrient-
able?
Dens.Faces by type
Great disnub
dirhombidodecahedron
(3)
(.4.3.3.3.4. .
4....4)/2
Ih60360 (*)204−96No 120+60+24

The great disnub dirhombidodecahedron has 240 of its 360 edges coinciding in space in 120 pairs. Because of this edge-degeneracy, it is not always considered to be a uniform polyhedron.

Column key

See also

References

. Magnus Wenninger . Polyhedron Models . Cambridge University Press . 1974 . 0-521-09859-9 .

. Magnus Wenninger . Dual Models . Cambridge University Press . 1983 . 0-521-54325-8 .

External links