In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
Uniform polyhedra can be divided between convex forms with convex regular polygon faces and star forms. Star forms have either regular star polygon faces or vertex figures or both.
This list includes these:
It was proven in that there are only 75 uniform polyhedra other than the infinite families of prisms and antiprisms. John Skilling discovered an overlooked degenerate example, by relaxing the condition that only two faces may meet at an edge. This is a degenerate uniform polyhedron rather than a uniform polyhedron, because some pairs of edges coincide.
Not included are:
Four numbering schemes for the uniform polyhedra are in common use, distinguished by letters:
There are generic geometric names for the most common polyhedra. The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube.
The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown.
There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.
Name | Picture | Vertex type | Wythoff symbol | Sym. | C# | W# | U# | K# | Vert. | Edges | Faces | Faces by type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tetrahedron | 3.3.3 | 3 2 3 | Td | C15 | W001 | U01 | K06 | 4 | 6 | 4 | 4 | ||
Triangular prism | 3.4.4 | 2 3 2 | D3h | C33a | — | U76a | K01a | 6 | 9 | 5 | 2 +3 | ||
Truncated tetrahedron | 3.6.6 | 2 3 3 | Td | C16 | W006 | U02 | K07 | 12 | 18 | 8 | 4 +4 | ||
Truncated cube | 3.8.8 | 2 3 4 | Oh | C21 | W008 | U09 | K14 | 24 | 36 | 14 | 8 +6 | ||
Truncated dodecahedron | 3.10.10 | 2 3 5 | Ih | C29 | W010 | U26 | K31 | 60 | 90 | 32 | 20 +12 | ||
Cube | 4.4.4 | 3 2 4 | Oh | C18 | W003 | U06 | K11 | 8 | 12 | 6 | 6 | ||
Pentagonal prism | 4.4.5 | 2 5 2 | D5h | C33b | — | U76b | K01b | 10 | 15 | 7 | 5 +2 | ||
Hexagonal prism | 4.4.6 | 2 6 2 | D6h | C33c | — | U76c | K01c | 12 | 18 | 8 | 6 +2 | ||
Heptagonal prism | 4.4.7 | 2 7 2 | D7h | C33d | — | U76d | K01d | 14 | 21 | 9 | 7 +2 | ||
Octagonal prism | 4.4.8 | 2 8 2 | D8h | C33e | — | U76e | K01e | 16 | 24 | 10 | 8 +2 | ||
Enneagonal prism | 4.4.9 | 2 9 2 | D9h | C33f | — | U76f | K01f | 18 | 27 | 11 | 9 +2 | ||
Decagonal prism | 4.4.10 | 2 10 2 | D10h | C33g | — | U76g | K01g | 20 | 30 | 12 | 10 +2 | ||
Hendecagonal prism | 4.4.11 | 2 11 2 | D11h | C33h | — | U76h | K01h | 22 | 33 | 13 | 11 +2 | ||
Dodecagonal prism | 4.4.12 | 2 12 2 | D12h | C33i | — | U76i | K01i | 24 | 36 | 14 | 12 +2 | ||
Truncated octahedron | 4.6.6 | 2 4 3 | Oh | C20 | W007 | U08 | K13 | 24 | 36 | 14 | 6 +8 | ||
Truncated cuboctahedron | 4.6.8 | 2 3 4 | Oh | C23 | W015 | U11 | K16 | 48 | 72 | 26 | 12 +8 +6 | ||
Truncated icosidodecahedron | 4.6.10 | 2 3 5 | Ih | C31 | W016 | U28 | K33 | 120 | 180 | 62 | 30 +20 +12 | ||
Dodecahedron | 5.5.5 | 3 2 5 | Ih | C26 | W005 | U23 | K28 | 20 | 30 | 12 | 12 | ||
Truncated icosahedron | 5.6.6 | 2 5 3 | Ih | C27 | W009 | U25 | K30 | 60 | 90 | 32 | 12 +20 | ||
Octahedron | 3.3.3.3 | 4 2 3 | Oh | C17 | W002 | U05 | K10 | 6 | 12 | 8 | 8 | ||
Square antiprism | 3.3.3.4 | 2 2 4 | D4d | C34a | — | U77a | K02a | 8 | 16 | 10 | 8 +2 | ||
Pentagonal antiprism | 3.3.3.5 | 2 2 5 | D5d | C34b | — | U77b | K02b | 10 | 20 | 12 | 10 +2 | ||
Hexagonal antiprism | 3.3.3.6 | 2 2 6 | D6d | C34c | — | U77c | K02c | 12 | 24 | 14 | 12 +2 | ||
Heptagonal antiprism | 3.3.3.7 | 2 2 7 | D7d | C34d | — | U77d | K02d | 14 | 28 | 16 | 14 +2 | ||
Octagonal antiprism | 3.3.3.8 | 2 2 8 | D8d | C34e | — | U77e | K02e | 16 | 32 | 18 | 16 +2 | ||
Enneagonal antiprism | 3.3.3.9 | 2 2 9 | D9d | C34f | — | U77f | K02f | 18 | 36 | 20 | 18 +2 | ||
Decagonal antiprism | 3.3.3.10 | 2 2 10 | D10d | C34g | — | U77g | K02g | 20 | 40 | 22 | 20 +2 | ||
Hendecagonal antiprism | 3.3.3.11 | 2 2 11 | D11d | C34h | — | U77h | K02h | 22 | 44 | 24 | 22 +2 | ||
Dodecagonal antiprism | 3.3.3.12 | 2 2 12 | D12d | C34i | — | U77i | K02i | 24 | 48 | 26 | 24 +2 | ||
Cuboctahedron | 3.4.3.4 | 2 3 4 | Oh | C19 | W011 | U07 | K12 | 12 | 24 | 14 | 8 +6 | ||
Rhombicuboctahedron | 3.4.4.4 | 3 4 2 | Oh | C22 | W013 | U10 | K15 | 24 | 48 | 26 | 8 +(6+12) | ||
Rhombicosidodecahedron | 3.4.5.4 | 3 5 2 | Ih | C30 | W014 | U27 | K32 | 60 | 120 | 62 | 20 +30 +12 | ||
Icosidodecahedron | 3.5.3.5 | 2 3 5 | Ih | C28 | W012 | U24 | K29 | 30 | 60 | 32 | 20 +12 | ||
Icosahedron | 3.3.3.3.3 | 5 2 3 | Ih | C25 | W004 | U22 | K27 | 12 | 30 | 20 | 20 | ||
Snub cube | 3.3.3.3.4 | 2 3 4 | O | C24 | W017 | U12 | K17 | 24 | 60 | 38 | (8+24) +6 | ||
Snub dodecahedron | 3.3.3.3.5 | 2 3 5 | I | C32 | W018 | U29 | K34 | 60 | 150 | 92 | (20+60) +12 |
The forms containing only convex faces are listed first, followed by the forms with star faces. Again infinitely many prisms and antiprisms exist; they are listed here up to the 8-sided ones.
The uniform polyhedra 3 3,, 3, 3, and (3) have some faces occurring as coplanar pairs. (Coxeter et al. 1954, pp. 423, 425, 426; Skilling 1975, p. 123)
Name | Image | Wyth sym | Vert. fig | Sym. | C# | W# | U# | K# | Vert. | Edges | Faces | Chi | Orient- able? | Dens. | Faces by type | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Octahemioctahedron | 3 3 | 6..6.3 | Oh | C37 | W068 | U03 | K08 | 12 | 24 | 12 | 0 | Yes | 8+4 | ||||
Tetrahemihexahedron | 3 2 | 4..4.3 | Td | C36 | W067 | U04 | K09 | 6 | 12 | 7 | 1 | No | 4+3 | ||||
Cubohemioctahedron | 4 3 | 6..6.4 | Oh | C51 | W078 | U15 | K20 | 12 | 24 | 10 | −2 | No | 6+4 | ||||
Great dodecahedron | 2 5 | (5.5.5.5.5)/2 | Ih | C44 | W021 | U35 | K40 | 12 | 30 | 12 | −6 | Yes | 3 | 12 | |||
Great icosahedron | 2 3 | (3.3.3.3.3)/2 | Ih | C69 | W041 | U53 | K58 | 12 | 30 | 20 | 2 | Yes | 7 | 20 | |||
Great ditrigonal icosidodecahedron | 3 5 | (5.3.5.3.5.3)/2 | Ih | C61 | W087 | U47 | K52 | 20 | 60 | 32 | −8 | Yes | 6 | 20+12 | |||
Small rhombihexahedron | 2 4 | 4.8.. | Oh | C60 | W086 | U18 | K23 | 24 | 48 | 18 | −6 | No | 12+6 | ||||
Small cubicuboctahedron | 4 4 | 8..8.4 | Oh | C38 | W069 | U13 | K18 | 24 | 48 | 20 | −4 | Yes | 2 | 8+6+6 | |||
Great rhombicuboctahedron | 4 2 | 4..4.4 | Oh | C59 | W085 | U17 | K22 | 24 | 48 | 26 | 2 | Yes | 5 | 8+(6+12) | |||
Small dodecahemi- dodecahedron | 5 5 | 10..10.5 | Ih | C65 | W091 | U51 | K56 | 30 | 60 | 18 | −12 | No | 12+6 | ||||
Great dodecahem- icosahedron | 5 3 | 6..6.5 | Ih | C81 | W102 | U65 | K70 | 30 | 60 | 22 | −8 | No | 12+10 | ||||
Small icosihemi- dodecahedron | 3 5 | 10..10.3 | Ih | C63 | W089 | U49 | K54 | 30 | 60 | 26 | −4 | No | 20+6 | ||||
Small dodecicosahedron | 3 5 | 10.6.. | Ih | C64 | W090 | U50 | K55 | 60 | 120 | 32 | −28 | No | 20+12 | ||||
Small rhombidodecahedron | 2 5 | 10.4.. | Ih | C46 | W074 | U39 | K44 | 60 | 120 | 42 | −18 | No | 30+12 | ||||
Small dodecicosi- dodecahedron | 5 5 | 10..10.5 | Ih | C42 | W072 | U33 | K38 | 60 | 120 | 44 | −16 | Yes | 2 | 20+12+12 | |||
Rhombicosahedron | 2 3 | 6.4.. | Ih | C72 | W096 | U56 | K61 | 60 | 120 | 50 | −10 | No | 30+20 | ||||
Great icosicosi- dodecahedron | 5 3 | 6..6.5 | Ih | C62 | W088 | U48 | K53 | 60 | 120 | 52 | −8 | Yes | 6 | 20+12+20 | |||
Pentagrammic prism | 2 2 | .4.4 | D5h | C33b | — | U78a | K03a | 10 | 15 | 7 | 2 | Yes | 2 | 5+2 | |||
Heptagrammic prism (7/2) | 2 2 | .4.4 | D7h | C33d | — | U78b | K03b | 14 | 21 | 9 | 2 | Yes | 2 | 7+2 | |||
Heptagrammic prism (7/3) | 2 2 | .4.4 | D7h | C33d | — | U78c | K03c | 14 | 21 | 9 | 2 | Yes | 3 | 7+2 | |||
Octagrammic prism | 2 2 | .4.4 | D8h | C33e | — | U78d | K03d | 16 | 24 | 10 | 2 | Yes | 3 | 8+2 | |||
Pentagrammic antiprism | 2 2 | .3.3.3 | D5h | C34b | — | U79a | K04a | 10 | 20 | 12 | 2 | Yes | 2 | 10+2 | |||
Pentagrammic crossed-antiprism | 2 2 | .3.3.3 | D5d | C35a | — | U80a | K05a | 10 | 20 | 12 | 2 | Yes | 3 | 10+2 | |||
Heptagrammic antiprism (7/2) | 2 2 | .3.3.3 | D7h | C34d | — | U79b | K04b | 14 | 28 | 16 | 2 | Yes | 3 | 14+2 | |||
Heptagrammic antiprism (7/3) | 2 2 | .3.3.3 | D7d | C34d | — | U79c | K04c | 14 | 28 | 16 | 2 | Yes | 3 | 14+2 | |||
Heptagrammic crossed-antiprism | 2 2 | .3.3.3 | D7h | C35b | — | U80b | K05b | 14 | 28 | 16 | 2 | Yes | 4 | 14+2 | |||
Octagrammic antiprism | 2 2 | .3.3.3 | D8d | C34e | — | U79d | K04d | 16 | 32 | 18 | 2 | Yes | 3 | 16+2 | |||
Octagrammic crossed-antiprism | 2 2 | .3.3.3 | D8d | C35c | — | U80c | K05c | 16 | 32 | 18 | 2 | Yes | 5 | 16+2 | |||
Small stellated dodecahedron | 5 2 | 5 | Ih | C43 | W020 | U34 | K39 | 12 | 30 | 12 | −6 | Yes | 3 | 12 | |||
Great stellated dodecahedron | 3 2 | 3 | Ih | C68 | W022 | U52 | K57 | 20 | 30 | 12 | 2 | Yes | 7 | 12 | |||
Ditrigonal dodeca- dodecahedron | 3 5 | (.5)3 | Ih | C53 | W080 | U41 | K46 | 20 | 60 | 24 | −16 | Yes | 4 | 12+12 | |||
Small ditrigonal icosidodecahedron | 3 3 | (.3)3 | Ih | C39 | W070 | U30 | K35 | 20 | 60 | 32 | −8 | Yes | 2 | 20+12 | |||
Stellated truncated hexahedron | 2 3 | ..3 | Oh | C66 | W092 | U19 | K24 | 24 | 36 | 14 | 2 | Yes | 7 | 8+6 | |||
Great rhombihexahedron | 2 | 4... | Oh | C82 | W103 | U21 | K26 | 24 | 48 | 18 | −6 | No | 12+6 | ||||
Great cubicuboctahedron | 3 4 | .3..4 | Oh | C50 | W077 | U14 | K19 | 24 | 48 | 20 | −4 | Yes | 4 | 8+6+6 | |||
Great dodecahemi- dodecahedron | ... | Ih | C86 | W107 | U70 | K75 | 30 | 60 | 18 | −12 | No | 12+6 | |||||
Small dodecahemi- cosahedron | 3 | 6..6. | Ih | C78 | W100 | U62 | K67 | 30 | 60 | 22 | −8 | No | 12+10 | ||||
Dodeca- dodecahedron | 2 5 | (.5)2 | Ih | C45 | W073 | U36 | K41 | 30 | 60 | 24 | −6 | Yes | 3 | 12+12 | |||
Great icosihemi- dodecahedron | 3 | ...3 | Ih | C85 | W106 | U71 | K76 | 30 | 60 | 26 | −4 | No | 20+6 | ||||
Great icosidodecahedron | 2 3 | (.3)2 | Ih | C70 | W094 | U54 | K59 | 30 | 60 | 32 | 2 | Yes | 7 | 20+12 | |||
Cubitruncated cuboctahedron | 3 4 | .6.8 | Oh | C52 | W079 | U16 | K21 | 48 | 72 | 20 | −4 | Yes | 4 | 8+6+6 | |||
Great truncated cuboctahedron | 2 3 | .4. | Oh | C67 | W093 | U20 | K25 | 48 | 72 | 26 | 2 | Yes | 1 | 12+8+6 | |||
Truncated great dodecahedron | 2 5 | 10.10. | Ih | C47 | W075 | U37 | K42 | 60 | 90 | 24 | −6 | Yes | 3 | 12+12 | |||
Small stellated truncated dodecahedron | 2 5 | ..5 | Ih | C74 | W097 | U58 | K63 | 60 | 90 | 24 | −6 | Yes | 9 | 12+12 | |||
Great stellated truncated dodecahedron | 2 3 | ..3 | Ih | C83 | W104 | U66 | K71 | 60 | 90 | 32 | 2 | Yes | 13 | 20+12 | |||
Truncated great icosahedron | 2 3 | 6.6. | Ih | C71 | W095 | U55 | K60 | 60 | 90 | 32 | 2 | Yes | 7 | 12+20 | |||
Great dodecicosahedron | 3 | 6... | Ih | C79 | W101 | U63 | K68 | 60 | 120 | 32 | −28 | No | 20+12 | ||||
Great rhombidodecahedron | 2 | 4... | Ih | C89 | W109 | U73 | K78 | 60 | 120 | 42 | −18 | No | 30+12 | ||||
Icosidodeca- dodecahedron | 5 3 | 6..6.5 | Ih | C56 | W083 | U44 | K49 | 60 | 120 | 44 | −16 | Yes | 4 | 12+12+20 | |||
Small ditrigonal dodecicosi- dodecahedron | 3 5 | 10..10.3 | Ih | C55 | W082 | U43 | K48 | 60 | 120 | 44 | −16 | Yes | 4 | 20+12+12 | |||
Great ditrigonal dodecicosi- dodecahedron | 3 5 | .3..5 | Ih | C54 | W081 | U42 | K47 | 60 | 120 | 44 | −16 | Yes | 4 | 20+12+12 | |||
Great dodecicosi- dodecahedron | 3 | ...3 | Ih | C77 | W099 | U61 | K66 | 60 | 120 | 44 | −16 | Yes | 10 | 20+12+12 | |||
Small icosicosi- dodecahedron | 3 3 | 6..6.3 | Ih | C40 | W071 | U31 | K36 | 60 | 120 | 52 | −8 | Yes | 2 | 20+12+20 | |||
Rhombidodeca- dodecahedron | 5 2 | 4..4.5 | Ih | C48 | W076 | U38 | K43 | 60 | 120 | 54 | −6 | Yes | 3 | 30+12+12 | |||
Great rhombicosi- dodecahedron | 3 2 | 4..4.3 | Ih | C84 | W105 | U67 | K72 | 60 | 120 | 62 | 2 | Yes | 13 | 20+30+12 | |||
Icositruncated dodeca- dodecahedron | 3 5 | .6.10 | Ih | C57 | W084 | U45 | K50 | 120 | 180 | 44 | −16 | Yes | 4 | 20+12+12 | |||
Truncated dodeca- dodecahedron | 2 5 | .4. | Ih | C75 | W098 | U59 | K64 | 120 | 180 | 54 | −6 | Yes | 3 | 30+12+12 | |||
Great truncated icosidodecahedron | 2 3 | .4.6 | Ih | C87 | W108 | U68 | K73 | 120 | 180 | 62 | 2 | Yes | 13 | 30+20+12 | |||
Snub dodeca- dodecahedron | 2 5 | 3.3..3.5 | I | C49 | W111 | U40 | K45 | 60 | 150 | 84 | −6 | Yes | 3 | 60+12+12 | |||
Inverted snub dodeca- dodecahedron | 2 5 | 3..3.3.5 | I | C76 | W114 | U60 | K65 | 60 | 150 | 84 | −6 | Yes | 9 | 60+12+12 | |||
Great snub icosidodecahedron | 2 3 | 34. | I | C73 | W113 | U57 | K62 | 60 | 150 | 92 | 2 | Yes | 7 | (20+60)+12 | |||
Great inverted snub icosidodecahedron | 2 3 | 34. | I | C88 | W116 | U69 | K74 | 60 | 150 | 92 | 2 | Yes | 13 | (20+60)+12 | |||
Great retrosnub icosidodecahedron | 2 | (34.)/2 | I | C90 | W117 | U74 | K79 | 60 | 150 | 92 | 2 | Yes | 37 | (20+60)+12 | |||
Great snub dodecicosi- dodecahedron | 3 | 33..3. | I | C80 | W115 | U64 | K69 | 60 | 180 | 104 | −16 | Yes | 10 | (20+60)+(12+12) | |||
Snub icosidodeca- dodecahedron | 3 5 | 33.5.3. | I | C58 | W112 | U46 | K51 | 60 | 180 | 104 | −16 | Yes | 4 | (20+60)+12+12 | |||
Small snub icos- icosidodecahedron | 3 3 | 35. | Ih | C41 | W110 | U32 | K37 | 60 | 180 | 112 | −8 | Yes | 2 | (40+60)+12 | |||
Small retrosnub icosicosi- dodecahedron | (35.)/2 | Ih | C91 | W118 | U72 | K77 | 60 | 180 | 112 | −8 | Yes | 38 | (40+60)+12 | ||||
Great dirhombicosi- dodecahedron | nowrap | 3 | (4..4.3. 4..4.)/2 | Ih | C92 | W119 | U75 | K80 | 60 | 240 | 124 | −56 | No | 40+60+24 |
Name | Image | Wyth sym | Vert. fig | Sym. | C# | W# | U# | K# | Vert. | Edges | Faces | Chi | Orient- able? | Dens. | Faces by type | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Great disnub dirhombidodecahedron | (3) | (.4.3.3.3.4. . 4....4)/2 | Ih | — | — | — | — | 60 | 360 (*) | 204 | −96 | No | 120+60+24 |
The great disnub dirhombidodecahedron has 240 of its 360 edges coinciding in space in 120 pairs. Because of this edge-degeneracy, it is not always considered to be a uniform polyhedron.
. Magnus Wenninger . Polyhedron Models . Cambridge University Press . 1974 . 0-521-09859-9 .
. Magnus Wenninger . Dual Models . Cambridge University Press . 1983 . 0-521-54325-8 .