List of systems biology modeling software explained

Systems biology relies heavily on building mathematical models to help understand and make predictions of biological processes. Specialized software to assist in building models has been developed since the arrival of the first digital computers.[1] [2] [3] [4] The following list gives the currently supported software applications available to researchers.

The vast majority of modern systems biology modeling software support SBML, which is the de facto standard for exchanging models of biological cellular processes. Some tools also support CellML, a standard used for representing physiological processes. The advantage of using standard formats is that even though a particular software application may eventually become unsupported and even unusable, the models developed by that application can be easily transferred to more modern equivalents. This allows scientific research to be reproducible long after the original publication of the work.

To obtain more information about a particular tool, click on the name of the tool. This will direct you either to a peer-reviewed publication or, in some rare cases, to a dedicated Wikipedia page.

Actively supported open-source software applications

General information

When an entry in the SBML column states "Yes, but only for reactions.", it means that the tool only supports the reaction component of SBML. For example, rules, events, etc. are not supported.

NameDescription/Notability OSLicenseSiteSBML Support
iBioSimiBioSim[5] [6] is a computer-aided design (CAD) tool for the modeling, analysis, and design of genetic circuits.multiplatform (Java/C++)Apache Licensehttps://github.com/MyersResearchGroup/iBioSimYes
CompuCell3DGUI/Scripting tool[7] for building and simulating multicellular models.multiplatform (C++/Python)MIThttps://compucell3d.org/Yes, but only for reactions.
COPASIGUI tool[8] [9] for analyzing and simulating SBML models.multiplatform (C++)Artistic Licensehttp://www.copasi.orgYes
Cytosim Spatial simulator for flexible cytoskeletal filaments and motor proteins[10] Mac, Linux, Cygwin (C++) http://cytosim.orgNot applicable
libroadrunnerHigh-performance software library for simulation and analysis of SBML models[11] [12] multiplatform (C/C++)Apache Licensehttps://github.com/sys-bio/roadrunnerYes
massPySimulation tool [13] [14] that can work with COBRApy[15] multiplatform (Python)MIThttps://github.com/SBRG/MASSpyYes
MCellGUI tool for particle-based spatial stochastic simulation with individual molecules[16] [17] [18] multiplatform https://mcell.org/index.htmlNot applicable
OpenCORA cross-platform modelling environment, which is aimed at organizing, editing, simulating, and analysing CellML files on Windows, Linux and macOS.multiplatform (C++/Python)GPLv3https://opencor.ws/Uses CellML
PhysiBoSSA specialized form of the PhysiCell agent-based modeling platform that directly integrates Boolean signaling networks into cell Agents[19] multiplatform (C++)BSD-3https://github.com/PhysiBoSS/PhysiBoSSYes, but only for reactions
PhysiCellA agent-based[20] modeling framework for multicellular systems biology.multiplatform (C++)BSD-3http://physicell.orgYes, but only for reactions
PySCeSPython tool for modeling and analyzing SBML models[21] [22] [23] multiplatform (Python)BSD-3https://pysces.sourceforge.net/Yes
pySBPython-based[24] platform with specialization in rule-based models.multiplatform (Python)BSD-3https://pysb.org/Partial
ReaDDyParticle-based spatial simulator with intermolecular potentials[25] Linux and Mac Custom https://readdy.github.io/index.htmlNot applicable
SBSCLJava library[26] [27] with efficient and exhaustive support for SBMLmultiplatform (Java)LGPLhttps://draeger-lab.github.io/SBSCL/Yes
SBW (software)A distributed workbench[28] [29] that includes many modeling toolsmultiplatform (C/C++)BSD-3https://sbw.sourceforge.net/Yes
SmoldynParticle-based simulator for spatial stochastic simulations with individual molecules[30] [31] [32] [33] multiplatform (C/C++/Python)LGPLhttps://www.smoldyn.org/Not applicable
SpatiocyteSpatial modeling software that uses a fine lattice with up to one molecule per site[34] [35] multiplatform Unknown https://spatiocyte.orgNot applicable
SpringSaLaDParticle-based spatial simulator in which molecules are spheres that are linked by springs[36] multiplatform Unknown https://vcell.org/ssaladNot applicable
STEPSStochastic reaction-diffusion and membrane potential solver on distributed meshes[37] [38] [39] [40] multiplatform (C++/Python)GPLv2https://steps.sourceforge.netPartial https://steps.sourceforge.net/manual/sbml_importer.html#Level-of-support
Tellurium (software)Simulation environment,[41] [42] that packages multiple libraries into one platform.multiplatform (Python)Apache Licensehttps://github.com/sys-bio/telluriumYes
URDMEStochastic reaction-diffusion simulation on unstructured meshes[43] MatLab on Mac, Linux GPL3 http://urdme.github.io/urdme/Not applicable
VCellComprehensive modeling platform[44] [45] for non-spatial, spatial, deterministic and stochastic simulations, including both reaction networks and reaction rules. multiplatform (Java)MIThttps://vcell.orgYes

Specialist Tools

The following table lists specialist tools that cannot be grouped with the modeling tools.

NameDescription/Notability OSLicenseSite
PySCeSToolboxPySCeSToolbox[46] is a set of metabolic model analysis tools. Among other features, it can be used to generate the control analysis equations that relate the elasticities to the control coefficients. The package is cross-platform and requires PySCeS and Maxima to operate. multiplatform (C++/Python)BSD-3https://github.com/PySCeS/PyscesToolbox

Feature Tables

Supported modeling paradigms

Name ODE Constraint based Stochastic Logical Agent based Spatial (particle) Spatial (continuous)
iBioSim Yes No Yes No Limited No No
CompuCell3D Yes No No No Yes No Yes
COPASI Yes No Yes No No No No
Cytosim No No Yes No ? Yes ?
libroadrunner Yes No Yes No No No No
massPy Uses libroadrunner Uses COBRApy No No No No
MCell No No Yes No No Yes No
OpenCOR Yes No No No No No No
PhysiBoSS
PhysiCell Uses libroadrunner No No No Yes ? Yes
PySCeS Yes No ? No No No No
pySB Yes No No No No No No
ReaDDy
SBSCL Yes ? ? No No No No
SBW Yes No Yes No No No No
Smoldyn No No Yes No No Yes No
Spatiocyte
SpringSaLaD
STEPS
Tellurium (software) Uses libroadrunner
URDME
VCell Yes No ? No No No Single Cell

Differential equation specific features

Name Non-stiff solver Stiff solver Steady-state solver Steady-state sensitivities Time-dependent sensitivities Bifurcation Analysis
iBioSim Yes Yes No No ? No
CompuCell3D Uses libroadrunner NA
COPASI Yes Yes Yes Yes ? Limited
libroadrunner Yes Yes Yes Yes Yes via AUTO2000 plugin
masspy Uses libroadrunner
OpenCOR Yes Yes ? ? ? No
PhysiBoSS
PhysiCell Uses libroadrunner
PySCeS Yes Yes Yes Yes ? Limited+
pySB Yes No No No No No
SBSCL
SBWUses C# edition of roadrunner Yes
Tellurium (software) Uses libroadrunner
VCell Yes Yes No No No No

File format support and interface type

Name Import Export Primary Interface Network visualization (editing)
iBioSim SBML SBML GUI Yes (Yes)
CompuCell3D Native XML specification format and SBML Native XML GUI/Python scripting No
COPASI Native XML specification format and SBML Native XML and SBML GUI Yes (No)
libroadrunner SBML SBML Python scripting No
masspy SBML SBML Python scripting No

Advanced features (where applicable)

Name Stoichiometry matrix Reduced stoich matrix Conserved moiety analysis Jacobian MCA
COPASI Yes Yes Yes Yes Yes
libroadrunner Yes Yes Yes Yes Yes
masspy via libroadrunner
PySCeS Yes Yes Yes Yes Yes
VCell ? ? ? ? Limited

Other features

Name Parameter Estimation DAE support Units support
iBioSim No ? ?
ComputeCell3D NA NA ?
COPASI Yes Limited Yes
libroadrunner via Python packages Limited Yes
masspy via Python packages Limited Yes

Particle-based simulators

Particle based simulators treat each molecule of interest as an individual particle in continuous space, simulating molecular diffusion, molecule-membrane interactions and chemical reactions.[47]

Comparison of particle-based simulators

The following list compares the features for several particle-based simulators. This table is edited from a version that was originally published in the Encyclopedia of Computational Neuroscience.[48] System boundaries codes: R = reflecting, A = absorbing, T = transmitting, P = periodic, and I = interacting. * Algorithm is exact but software produced incorrect results at the time of original table compilation. † These benchmark run times are not comparable with others due to differing levels of detail.

Feature MCell Smoldyn eGFRD SpringSaLaD ReaDDy
Time steps ~1 us ns to ms event-based ~10 ns ~0.1 ns to us
Molecules points points, spheres spheres multi-spheres multi-spheres
Dimensions 2,3 1,2,3 3 3 3
System boundaries R,A,P,T R,A,P,T P R P,I
Surfaces triangle mesh many primitives - 1 flat surface plane, sphere
Surface molecules 1/tile, 2 states unlimited, 4 states - unlimited, 3 states -
Excluded volume - excellent exact good excellent
Multimers states only rule-based model - explicit explicit
Allostery - yes - yes -
Reaction accuracy very good excellent exact* excellent excellent
Dissociation products stochastic fixed separation adjacent adjacent adjacent
Molecule-surface interactions good excellent - to sites only potentials
Long-range interactions - yes - - yes
Benchmark run time 67 s 22 s 13 days† 9.1 months† 13 minutes
Distribution executable executable self-compile Java file self-compile
User interface GUI, text text text GUI Python script
Graphical output excellent good partial support partial support good
Library interface Python C/C++, Python - - Python
References [49] [50] [51] [52] [53] [54] [55] [56] [57] [58]

Model calibration software

Model calibration is a key activity when developing systems biology models. This table highlights some of the current model calibration tools available to systems biology modelers. The first table list tools that are SBML compatible.

!Tool!PEtab Compatible! P1! P2
pyPESTO[59] YesNANA
COPASIYesNANA

PEtab[60] is a community standard for specifying model calibration runs.

Legacy open-source software applications

The following list some very early software for modeling biochemical systems that were developed pre-1980s There are listed for historical interest.

NameDescription/Notability Language Terminus ante quem[61]
BIOSIM[62] The first ever recorded digital simulator of biochemical networks (by David Garfinkel) FORTRAN IV 1968
KDF 9[63] First simulator to support MCA. Developed by the late Jim Burns in EdinburghEarly form of FORTRAN 1968
METASIM[64] Early simulator by Park and Wright PL/1 1973

The following list shows some of the software modeling applications that were developed in the 1980s and 1990s. There are listed for historical interest.

NameDescription/Notability Language SBML Support Terminus ante quem[65]
COR[66] First public CellML-based environment.Object PascalUses CellML2010
DBsolve[67] Early GUI based simulation platform. C/C++ No 1999
E-Cell[68] One of the earliest attempts at a whole-cell modeling platform. C/C++ No 1999
Gepasi[69] First GUI application that supported metabolic control analysis and parameter estimation. C/C++ Yes 1993
Jarnac[70] First GUI based application to support scripting in systems biology modeling. Object Pascal Yes 2000
JSim[71] First Java-based systems biology modeling platform Java Yes 2003
MetaMod[72] One of the first PC-based systems biology simulators BBC MicroNo 1986
MetaModel[73] Early PC-based systems biology simulator Turbo Pascal 5.0 No 1991
MIST[74] GUI based simulator Borland Pascal 7.0 No 1995
SCAMP[75] First application to support metabolic control analysis and simulation on a PC Pascal, later in C No 1985 (Thesis)

Notes and References

  1. Chance . Britton . Garfinkel . David . Higgins . Joseph . Hess . Benno . Chance . E.M. . Metabolic Control Mechanisms . Journal of Biological Chemistry . August 1960 . 235 . 8 . 2426–2439 . 10.1016/S0021-9258(18)64638-1. free .
  2. Book: Chance . Britton . Higgins . Joseph . Garfinkel . David . Analogue and digital computer representations of biochemical processes . 1962 . Federation Proceedings, Vol 12. No. 1-2 . Federation of American Societies for Experimental Biology.. . 75.
  3. Burns . Jim . Metabolic Control Analysis . Thesis . 1 March 1973 . 10.5281/zenodo.7240738.
  4. Garfinkel . David . A machine-independent language for the simulation of complex chemical and biochemical systems . Computers and Biomedical Research . August 1968 . 2 . 1 . 31–44 . 10.1016/0010-4809(68)90006-2. 5743538 .
  5. Watanabe . Leandro . Nguyen . Tramy . Zhang . Michael . Zundel . Zach . Zhang . Zhen . Madsen . Curtis . Roehner . Nicholas . Myers . Chris . iBioSim3: A Tool for Model-Based Genetic Circuit Design . ACS Synthetic Biology . 19 July 2019 . 8 . 7 . 1560–1563 . 10.1021/acssynbio.8b00078. 29944839 . 49429947 .
  6. Martínez-García . Esteban . Goñi-Moreno . Angel . Bartley . Bryan . McLaughlin . James . Sánchez-Sampedro . Lucas . Pascual del Pozo . Héctor . Prieto Hernández . Clara . Marletta . Ada Serena . De Lucrezia . Davide . Sánchez-Fernández . Guzmán . Fraile . Sofía . de Lorenzo . Víctor . SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts . Nucleic Acids Research . 8 January 2020 . 48 . D1 . D1164–D1170 . 10.1093/nar/gkz1024. 31740968 . 7018797 .
  7. Book: Swat . Maciej H. . Thomas . Gilberto L. . Belmonte . Julio M. . Shirinifard . Abbas . Hmeljak . Dimitrij . Glazier . James A. . Computational Methods in Cell Biology . Multi-Scale Modeling of Tissues Using CompuCell3D . 2012 . 110 . 325–366 . 10.1016/B978-0-12-388403-9.00013-8. 22482955 . 3612985 . 9780123884039 .
  8. Bergmann . Frank T. . Hoops . Stefan . Klahn . Brian . Kummer . Ursula . Mendes . Pedro . Pahle . Jürgen . Sahle . Sven . COPASI and its applications in biotechnology . Journal of Biotechnology . November 2017 . 261 . 215–220 . 10.1016/j.jbiotec.2017.06.1200. 28655634 . 5623632 .
  9. Yeoh . Jing Wui . Ng . Kai Boon Ivan . Teh . Ai Ying . Zhang . JingYun . Chee . Wai Kit David . Poh . Chueh Loo . An Automated Biomodel Selection System (BMSS) for Gene Circuit Designs . ACS Synthetic Biology . 19 July 2019 . 8 . 7 . 1484–1497 . 10.1021/acssynbio.8b00523. 31035759 . 140321282 .
  10. Nedelec . Francois . Foethke . Dietrich . Collective Langevin dynamics of flexible cytoskeletal fibers . New Journal of Physics . 9 . 2007 . 11 . 427. 10.1088/1367-2630/9/11/427 . 0903.5178 . 2007NJPh....9..427N . 16924457 .
  11. Somogyi . Endre T. . Bouteiller . Jean-Marie . Glazier . James A. . König . Matthias . Medley . J. Kyle . Swat . Maciej H. . Sauro . Herbert M. . libRoadRunner: a high performance SBML simulation and analysis library: Table 1. . Bioinformatics . 15 October 2015 . 31 . 20 . 3315–3321 . 10.1093/bioinformatics/btv363. 26085503 . 4607739 .
  12. Ghaffarizadeh . Ahmadreza . Heiland . Randy . Friedman . Samuel H. . Mumenthaler . Shannon M. . Macklin . Paul . PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems . PLOS Computational Biology . 23 February 2018 . 14 . 2 . e1005991 . 10.1371/journal.pcbi.1005991. 29474446 . 5841829 . 2018PLSCB..14E5991G . free .
  13. Haiman . Zachary B. . Zielinski . Daniel C. . Koike . Yuko . Yurkovich . James T. . Palsson . Bernhard O. . MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics . PLOS Computational Biology . 28 January 2021 . 17 . 1 . e1008208 . 10.1371/journal.pcbi.1008208. 33507922 . 7872247 . 2021PLSCB..17E8208H . free .
  14. Foster . Charles J . Wang . Lin . Dinh . Hoang V . Suthers . Patrick F . Maranas . Costas D . Building kinetic models for metabolic engineering . Current Opinion in Biotechnology . February 2021 . 67 . 35–41 . 10.1016/j.copbio.2020.11.010. 33360621 . 229690954 .
  15. Ebrahim . Ali . Lerman . Joshua A . Palsson . Bernhard O . Hyduke . Daniel R . COBRApy: COnstraints-Based Reconstruction and Analysis for Python . BMC Systems Biology . December 2013 . 7 . 1 . 74 . 10.1186/1752-0509-7-74. 23927696 . 3751080 . free .
  16. Stiles . Joel R. . Van Helden . Dirk . Bartol . Thomas M. . Salpeter . Edwin E. . Salpeter . Miriam M . Miniature endplate current rise times <100 us from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle . Proc. Natl. Acad. Sci. USA . 1996 . 93 . 12 . 5747–5752. 10.1073/pnas.93.12.5747 . 8650164 . 39132 . free .
  17. Stiles . Joel R. . Bartol . Thomas M. . Monte Carlo methods for simulating realistic synaptic microphysiology using MCell . 2001 . Computational Neuroscience: Realistic Modeling for Experimentalists . 87–127.
  18. Kerr . R . Bartol . TM . Kaminsky . B . Dittrich . M . Chang . JCJ . Baden . S . Sejnowski . TJ . Stiles . JR . Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces . 2008 . SIAM J. Sci. Comput. . 30 . 6 . 3126–3149. 10.1137/070692017 . 20151023 . 2819163 . 2008SJSC...30.3126K .
  19. Letort . Gaelle . Montagud . Arnau . Stoll . Gautier . Heiland . Randy . Barillot . Emmanuel . Macklin . Paul . Zinovyev . Andrei . Calzone . Laurence . PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling . Bioinformatics . 1 April 2019 . 35 . 7 . 1188–1196 . 10.1093/bioinformatics/bty766. 30169736 . 6449758 .
  20. Ghaffarizadeh . Ahmadreza . Heiland . Randy . Friedman . Samuel H. . Mumenthaler . Shannon M. . Macklin . Paul . PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems . PLOS Computational Biology . 23 February 2018 . 14 . 2 . e1005991 . 10.1371/journal.pcbi.1005991. 29474446 . 5841829 . 2018PLSCB..14E5991G . free .
  21. Olivier . B. G. . Rohwer . J. M. . Hofmeyr . J.-H. S. . Modelling cellular systems with PySCeS . Bioinformatics . 15 February 2005 . 21 . 4 . 560–561 . 10.1093/bioinformatics/bti046. 15454409 . free .
  22. Mendoza-Cózatl . David G. . Moreno-Sánchez . Rafael . Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants . Journal of Theoretical Biology . February 2006 . 238 . 4 . 919–936 . 10.1016/j.jtbi.2005.07.003. 16125728 . 2006JThBi.238..919M .
  23. Ghaffarizadeh . Ahmadreza . Heiland . Randy . Friedman . Samuel H. . Mumenthaler . Shannon M. . Macklin . Paul . PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems . PLOS Computational Biology . 23 February 2018 . 14 . 2 . e1005991 . 10.1371/journal.pcbi.1005991. 29474446 . 5841829 . 2018PLSCB..14E5991G . free .
  24. Stefan . Melanie I. . Bartol . Thomas M. . Sejnowski . Terrence J. . Kennedy . Mary B. . Multi-state Modeling of Biomolecules . PLOS Computational Biology . 25 September 2014 . 10 . 9 . e1003844 . 10.1371/journal.pcbi.1003844. 25254957 . 4201162 . 2014PLSCB..10E3844S . free .
  25. Schöneberg . J. . Ullrich . A. . Noé . F. . 2014 . Simulation tools for particle-based reaction-diffusion dynamics in continuous space . BMC Biophys. . 7 . 11 . 10.1186/s13628-014-0011-5 . 25737778 . 4347613 . free .
  26. Panchiwala . H . Shah . S . Planatscher . H . Zakharchuk . M . König . M . Dräger . A . The Systems Biology Simulation Core Library. . Bioinformatics . 23 September 2021 . 38 . 3 . 864–865 . 10.1093/bioinformatics/btab669 . 34554191. 8756180 .
  27. Tangherloni . Andrea . Nobile . Marco S. . Cazzaniga . Paolo . Capitoli . Giulia . Spolaor . Simone . Rundo . Leonardo . Mauri . Giancarlo . Besozzi . Daniela . FiCoS: A fine-grained and coarse-grained GPU-powered deterministic simulator for biochemical networks . PLOS Computational Biology . 9 September 2021 . 17 . 9 . e1009410 . 10.1371/journal.pcbi.1009410. 34499658 . 8476010 . 2021PLSCB..17E9410T . free .
  28. Hucka . M. . Finney . A. . Sauro . H. M. . Bolouri . H. . Doyle . J. . Kitano . H. . The Erato Systems Biology Workbench: Enabling Interaction and Exchange Between Software Tools for Computational Biology . Biocomputing 2002 . December 2001 . 450–461 . 10.1142/9789812799623_0042. 11928498 . 978-981-02-4777-5 . 2299/11944 . free .
  29. Kawasaki . Regiane . Baraúna . Rafael A. . Silva . Artur . Carepo . Marta S. P. . Oliveira . Rui . Marques . Rodolfo . Ramos . Rommel T. J. . Schneider . Maria P. C. . Reconstruction of the Fatty Acid Biosynthetic Pathway of Exiguobacterium antarcticum B7 Based on Genomic and Bibliomic Data . BioMed Research International . 2016 . 2016 . 1–9 . 10.1155/2016/7863706. 27595107 . 4993939 . free .
  30. Andrews . Steven S. . Bray . Dennis . Stochastic simulation of chemical reactions with spatial resolution and single molecule detail . Physical Biology . 2004 . 1 . 3–4 . 137–151. 10.1088/1478-3967/1/3/001 . 16204833 . 2004PhBio...1..137A . 16394428 .
  31. Andrews . Steven S. . Addy . Nathan J. . Brent . Roger . Arkin . Adam P. . Detailed simulations of cell biology with Smoldyn 2.1 . PLOS Comput. Biol. . 2010 . 6 . 3 . e1000705. 10.1371/journal.pcbi.1000705 . 20300644 . 2837389 . 2010PLSCB...6E0705A . free .
  32. Andrews . Steven S. . Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction, and a library interface . Bioinformatics . 2017 . 33 . 5 . 710–717. 10.1093/bioinformatics/btw700 . 28365760 . free .
  33. Singh . Dilawar . Andrews . Steven S. . Python interfaces for the Smoldyn simulator . Bioinformatics . 2022 . 38 . 1 . 291–293. 10.1093/bioinformatics/btab530 . 34293100 .
  34. Book: Arjunan . S.N.V. . Takahashi . K. . 2017 . Multi-algorithm particle simulations with Spatiocyte . Methods in Molecular Biology . 1611 . 219–236.
  35. Arjunan . S.N.V. . Miyauchi . A. . Iwamoto . K. . Takahashi . K. . 2020 . pSpatiocyte: a high-performance simulator for intracellular reaction-diffusion systems . BMC Bioinformatics . 21 . 1 . 33. 10.1186/s12859-019-3338-8 . 31996129 . 6990473 . free .
  36. Michalski . P.J. . Loew . L.M. . 2016 . SpringSaLaD: a spatial, particle-based biochemical simulation platform with excluded volume . Biophys. J. . 110 . 3 . 523–529. 10.1016/j.bpj.2015.12.026 . 26840718 . 4744174 . 2016BpJ...110..523M .
  37. Hepburn . Iain . Chen . Weiliang . Wils . Stefan . De Schutter . Erik . STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies . BMC Systems Biology . May 2012 . 7 . 1 . 36 . 10.1186/1752-0509-6-36. 22574658 . 3472240 . 9165862 . free .
  38. Chen . Weiliang . De Schutter . Erik . Parallel STEPS: Large Scale Stochastic Spatial Reaction-Diffusion Simulation with High Performance Computers . Frontiers in Neuroinformatics . February 2017 . 11 . 1 . 13 . 10.3389/fninf.2017.00013. 28239346 . 5301017 . free .
  39. Hepburn . Iain . Chen . Weiliang . De Schutter . Erik . Accurate reaction-diffusion operator splitting on tetrahedral meshes for parallel stochastic molecular simulations . The Journal of Chemical Physics . August 2016 . 145 . 5 . 054118 . 10.1063/1.4960034. 27497550 . 1512.03126 . 2016JChPh.145e4118H . 17356298 .
  40. Chen . Weiliang . Carel . Tristan . Awile . Omar . Cantarutti . Nicola . Castiglioni . Giacomo . Cattabiani . Alessandro . Del Marmol . Baudouin . Hepburn . Iain . King . James G. . Kotsalos . Christos . Kumbhar . Pramod . Lallouette . Jules . Melchior . Samuel . Schürmann . Felix . De Schutter . Erik . STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale . Frontiers in Neuroinformatics . October 2022 . 16 . 883742 . 10.3389/fninf.2022.883742 . 36387588 . 9645802 . 1662-5196. free .
  41. Choi . Kiri . Medley . J. Kyle . König . Matthias . Stocking . Kaylene . Smith . Lucian . Gu . Stanley . Sauro . Herbert M. . Tellurium: An extensible python-based modeling environment for systems and synthetic biology . Biosystems . September 2018 . 171 . 74–79 . 10.1016/j.biosystems.2018.07.006. 30053414 . 6108935 .
  42. Pease . Nicholas A. . Nguyen . Phuc H.B. . Woodworth . Marcus A. . Ng . Kenneth K.H. . Irwin . Blythe . Vaughan . Joshua C. . Kueh . Hao Yuan . Tunable, division-independent control of gene activation timing by a polycomb switch . Cell Reports . March 2021 . 34 . 12 . 108888 . 10.1016/j.celrep.2021.108888. 33761349 . 8024876 .
  43. Drawert . B. . Engblom . S. . Hellander . A . URDME: A modular framework for stochastic simulation of reaction-transport processes in complex geometries . BMC Systems Biology . 6 . 2012. 76 . 10.1186/1752-0509-6-76 . 22727185 . 3439286 . free .
  44. Schaff . J. . Fink . C.C. . Slepchenko . B. . Carson . J.H. . Loew . L.M. . A general computational framework for modeling cellular structure and function . Biophysical Journal . September 1997 . 73 . 3 . 1135–1146 . 10.1016/S0006-3495(97)78146-3. 9284281 . 1181013 . 1997BpJ....73.1135S . 39818739 .
  45. Book: Cowan . Ann E. . Moraru . Ion I. . Schaff . James C. . Slepchenko . Boris M. . Loew . Leslie M. . Computational Methods in Cell Biology . Spatial Modeling of Cell Signaling Networks . 2012 . 110 . 195–221 . 10.1016/B978-0-12-388403-9.00008-4. 22482950 . 3519356 . 9780123884039 .
  46. Christensen . Carl D . Hofmeyr . Jan-Hendrik S . Rohwer . Johann M . PySCeSToolbox: a collection of metabolic pathway analysis tools . Bioinformatics . 1 January 2018 . 34 . 1 . 124–125 . 10.1093/bioinformatics/btx567. 28968872 . free .
  47. Schöneberg . J . Ullrich . A . Noé . F . 2014 . Simulation tools for particle-based reaction-diffusion dynamics in continuous space . BMC Biophys . 7 . 1 . 11 . 10.1186/s13628-014-0011-5 . 25737778 . 4347613 . free .
  48. Book: Andrews . Steven S. . Encyclopedia of Computational Neuroscience . Particle-Based Stochastic Simulators . 2018 . 10 . 978–1 . 10.1007/978-1-4614-7320-6_191-2. 978-1-4614-7320-6 .
  49. Stiles . JR . Bartol . TM . 2001 . Chapter 4, Monte Carlo methods for simulating realistic synaptic microphysiology using MCell . In: Computational neuroscience, realistic modeling for experimentalists, De Schutter, E (ed.) . CRC Press . Boca Raton . 87–127.
  50. Stefan . MI . Bartol . TM . Sejnowski . TJ . Kennedy . MB . 2014 . Multi-state modeling of biomolecules . PLOS Comput Biol . 10 . 9 . e1003844. 10.1371/journal.pcbi.1003844 . 25254957 . 4201162 . 2014PLSCB..10E3844S . free .
  51. Stiles . JR . Van Helden . D . Bartol . TM . Salpeter . EE . Salpeter . MM . 1996 . Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle . Proceedings of the National Academy of Sciences, USA . 93 . 12 . 5747–5752. 10.1073/pnas.93.12.5747 . 8650164 . 39132 . 1996PNAS...93.5747S . free .
  52. Andrews . SS . 2017 . Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface . Bioinformatics . 33 . 5 . 710–717. 10.1093/bioinformatics/btw700 . 28365760 . free .
  53. Andrews . SS . Addy . NJ . Brent . R . Arkin . AP . 2010 . Detailed simulations of cell biology with Smoldyn 2.1 . PLOS Comput Biol . 6 . 3 . e1000705. 10.1371/journal.pcbi.1000705 . 20300644 . 2837389 . 2010PLSCB...6E0705A . 2945597 . free .
  54. Sokolowski . TR . ten Wolde . PR . 2017 . Spatial-stochastic simulation of reaction-diffusion systems . q-bio.MN . 1705.08669.
  55. Takahashi . K . Tănase-Nicola . S . Ten Wolde . PR . 2010 . Spatio-temporal correlations can drastically change the response of a MAPK pathway . Proc Natl Acad Sci . 107 . 6 . 2473–2478. 10.1073/pnas.0906885107 . 20133748 . 2811204 . 0907.0514 . 2010PNAS..107.2473T . free .
  56. Tomita . M . Hashimoto . K . Takahashi . K . Shimizu . TS . et al. . 1999 . E-cell: software environment for whole-cell simulation . Bioinformatics . 15 . 1 . 72–84. 10.1093/bioinformatics/15.1.72 . 10068694 . free .
  57. Michalski . PJ . Loew . LM . 2016 . SpringSaLaD: a spatial, particle-based biochemical simulation platform with excluded volume . Biophys J . 110 . 3 . 523–529. 10.1016/j.bpj.2015.12.026 . 26840718 . 4744174 . 2016BpJ...110..523M .
  58. Schöneberg . J . Noé . F . 2013 . ReaDDy-a software for particle-based reaction-diffusion dynamics in crowded cellular environments . PLOS ONE . 8 . 9 . e74261. 10.1371/journal.pone.0074261 . 24040218 . 3770580 . 2013PLoSO...874261S . free .
  59. Schälte . Yannik . Fröhlich . Fabian . Jost . Paul J. . Vanhoefer . Jakob . Pathirana . Dilan . Stapor . Paul . Lakrisenko . Polina . Wang . Dantong . Raimúndez . Elba . Merkt . Simon . Schmiester . Leonard . Städter . Philipp . Grein . Stephan . Dudkin . Erika . Doresic . Domagoj . 2023 . pyPESTO: A modular and scalable tool for parameter estimation for dynamic models . q-bio.QM . 2305.01821.
  60. Schmiester . Leonard . Schälte . Yannik . Bergmann . Frank T. . Camba . Tacio . Dudkin . Erika . Egert . Janine . Fröhlich . Fabian . Fuhrmann . Lara . Hauber . Adrian L. . Kemmer . Svenja . Lakrisenko . Polina . Loos . Carolin . Merkt . Simon . Müller . Wolfgang . Pathirana . Dilan . Raimúndez . Elba . Refisch . Lukas . Rosenblatt . Marcus . Stapor . Paul L. . Städter . Philipp . Wang . Dantong . Wieland . Franz-Georg . Banga . Julio R. . Timmer . Jens . Villaverde . Alejandro F. . Sahle . Sven . Kreutz . Clemens . Hasenauer . Jan . Weindl . Daniel . PEtab—Interoperable specification of parameter estimation problems in systems biology . PLOS Computational Biology . 26 January 2021 . 17 . 1 . e1008646 . 10.1371/journal.pcbi.1008646 . 33497393 . 7864467 . 2004.01154 . 2021PLSCB..17E8646S . free .
  61. Based on earliest publication date
  62. Garfinkel . David . A machine-independent language for the simulation of complex chemical and biochemical systems . Computers and Biomedical Research . August 1968 . 2 . 1 . 31–44 . 10.1016/0010-4809(68)90006-2. 5743538 .
  63. Burns . Jim . Metabolic Control Anlaysis . 1 March 1973 . 10.5281/zenodo.7240738.
  64. Park . D.J.M. . Wright . B.E. . Metasim, a general purpose metabolic simulator for studying cellular transformations . Computer Programs in Biomedicine . March 1973 . 3 . 1 . 10–26 . 10.1016/0010-468X(73)90010-X. 4735157 .
  65. Based on earliest publication date
  66. Garny . A. . Kohl . P. . Noble . D. . 2003-12-01 . Cellular open resource (cor): a public cellml based environment for modeling biological function . International Journal of Bifurcation and Chaos . 13 . 12 . 3579–3590 . 10.1142/S021812740300882X . 2003IJBC...13.3579G . 0218-1274.
  67. Goryanin . I. . Hodgman . T. C. . Selkov . E. . Mathematical simulation and analysis of cellular metabolism and regulation . Bioinformatics . 1 September 1999 . 15 . 9 . 749–758 . 10.1093/bioinformatics/15.9.749. 10498775 . free .
  68. Tomita . M . Hashimoto . K . Takahashi . K . Shimizu . T. . Matsuzaki . Y . Miyoshi . F . Saito . K . Tanida . S . Yugi . K . Venter . J. . Hutchison . C. . E-CELL: software environment for whole-cell simulation . Bioinformatics . 1 January 1999 . 15 . 1 . 72–84 . 10.1093/bioinformatics/15.1.72. 10068694 . free .
  69. Mendes . Pedro . GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems . Bioinformatics . 1993 . 9 . 5 . 563–571 . 10.1093/bioinformatics/9.5.563. 8293329 .
  70. Book: Sauro . Herbert . JARNAC: a system for interactive metabolic analysis . 2000 . Animating the Cellular Map: Proceedings of the 9th International Meeting on BioThermoKinetics . 221–228.
  71. Butterworth . Erik . Jardine . Bartholomew E. . Raymond . Gary M. . Neal . Maxwell L. . Bassingthwaighte . James B. . JSim, an open-source modeling system for data analysis . F1000Research . 30 December 2013 . 2 . 288 . 10.12688/f1000research.2-288.v1. 24555116 . 3901508 . free .
  72. Hofmeyr . J. H. S. . Merwe . K. J. van der . METAMOD: software for steady-state modelling and control analysis of metabolic pathways on the BBC microcomputer . Bioinformatics . 1986 . 2 . 4 . 243–249 . 10.1093/bioinformatics/2.4.243. 3450367 .
  73. Cornish-Bowden . Athel . Hofmeyr . Jan-Hendrik S. . MetaModel: a program for modelling and control analysis of metabolic pathways on the IBM PC and compatibles . Bioinformatics . 1991 . 7 . 1 . 89–93 . 10.1093/bioinformatics/7.1.89. 2004280 .
  74. Ehlde . Magnus . Zacchi . Guido . MIST: a user-friendly metabolic simulator . Bioinformatics . 1995 . 11 . 2 . 201–207 . 10.1093/bioinformatics/11.2.201. 7620994 .
  75. Sauro . Herbert M. . Fell . David A. . SCAMP: A metabolic simulator and control analysis program . Mathematical and Computer Modelling . 1991 . 15 . 12 . 15–28 . 10.1016/0895-7177(91)90038-9. free .