This is a list of rules of inference, logical laws that relate to mathematical formulae.
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
Discharge rules permit inference from a subderivation based on a temporary assumption. Below, the notation
\varphi\vdash\psi
indicates such a subderivation from the temporary assumption
\varphi
\psi
\varphi\vdash\psi
\underline{\varphi\vdashlnot\psi}
lnot\varphi
lnot\varphi\vdash\psi
\underline{lnot\varphi\vdashlnot\psi}
\varphi
\varphi
\underline{lnot\varphi}
\psi
\underline{\varphi\vdash\psi}
\varphi → \psi
\varphi → \psi
\underline{\varphi }
\psi
\varphi → \psi
\underline{lnot\psi }
lnot\varphi
\varphi
\underline{\psi }
\varphi\land\psi
\underline{\varphi\land\psi}
\varphi
\underline{\varphi\land\psi}
\psi
\underline{\varphi }
\varphi\lor\psi
\underline{\psi }
\varphi\lor\psi
\varphi → \chi
\psi → \chi
\underline{\varphi\lor\psi}
\chi
\varphi\lor\psi
\underline{lnot\varphi }
\psi
\varphi\lor\psi
\underline{lnot\psi }
\varphi
\varphi → \chi
\psi → \xi
\underline{\varphi\lor\psi}
\chi\lor\xi
\varphi → \psi
\underline{\psi → \varphi}
\varphi\leftrightarrow\psi
\varphi\leftrightarrow\psi
\underline{\varphi }
\psi
\varphi\leftrightarrow\psi
\underline{\psi }
\varphi
\varphi\leftrightarrow\psi
\underline{lnot\varphi }
lnot\psi
\varphi\leftrightarrow\psi
\underline{lnot\psi }
lnot\varphi
\varphi\leftrightarrow\psi
\underline{\psi\lor\varphi}
\psi\land\varphi
\varphi\leftrightarrow\psi
\underline{lnot\psi\lorlnot\varphi}
lnot\psi\landlnot\varphi
In the following rules,
\varphi(\beta/\alpha)
\varphi
\beta
\varphi
\alpha
\underline{\varphi{(\beta/\alpha)}}
\forall\alpha\varphi
Restriction 1:
\beta
\varphi
\beta
\forall\alpha\varphi
\overline{\varphi{(\beta/\alpha)}}
Restriction: No free occurrence of
\alpha
\varphi
\beta
\underline{\varphi(\beta/\alpha)}
\exists\alpha\varphi
Restriction: No free occurrence of
\alpha
\varphi
\beta
\exists\alpha\varphi
\underline{\varphi(\beta/\alpha)\vdash\psi}
\psi
Restriction 1:
\beta
\varphi
\beta
\psi
\beta
The following are special cases of universal generalization and existential elimination; these occur in substructural logics, such as linear logic.
\alpha\vdash\beta
\overline{\alpha,\alpha\vdash\beta}
\underline{\alpha,\alpha,\gamma\vdash\beta}
\alpha,\gamma\vdash\beta
The rules above can be summed up in the following table.[1] The "Tautology" column shows how to interpret the notation of a given rule.
Rules of inference | Tautology | Name | |
---|---|---|---|
\begin{align} p\\ p → q\\ \therefore\overline{q }\\ \end{align} | (p\wedge(p → q)) → q | Modus ponens | |
\begin{align} \negq\\ p → q\\ \therefore\overline{\negp }\\ \end{align} | (\negq\wedge(p → q)) → \negp | Modus tollens | |
\begin{align} p → q\\ q → r\\ \therefore\overline{p → r}\\ \end{align} | ((p → q)\wedge(q → r)) → (p → r) | Hypothetical syllogism | |
\begin{align} p → q\\ \therefore\overline{p → (p\wedgeq)}\\ \end{align} | (p → q) → (p → (p\wedgeq)) | Absorption | |
\begin{align} p\\ q\\ \therefore\overline{p\wedgeq}\\ \end{align} | ((p)\wedge(q)) → (p\wedgeq) | Conjunction introduction | |
\begin{align} p\wedgeq\\ \therefore\overline{p }\\ \end{align} | (p\wedgeq) → p | Conjunction elimination | |
\begin{align}p\\ \therefore\overline{p\veeq}\\ \end{align} | p → (p\veeq) | Disjunction introduction | |
\begin{align} p → q\\ r → q\\ p\veer\\ \therefore\overline{q }\\ \end{align} | ((p → q)\wedge(r → q)\wedge(p\veer)) → q | Disjunction elimination | |
\begin{align} p\veeq\\ \negp\\ \therefore\overline{q }\\ \end{align} | ((p\veeq)\wedge\negp) → q | Disjunctive syllogism | |
\begin{align} p\veep\\ \therefore\overline{p }\\ \end{align} | (p\veep) → p | Disjunctive simplification | |
\begin{align} p\veeq\\ \negp\veer\\ \therefore\overline{q\veer}\\ \end{align} | ((p\veeq)\wedge(\negp\veer)) → (q\veer) | Resolution | |
\begin{align} p → q\\ q → p\\ \therefore\overline{p\leftrightarrowq}\\ \end{align} | ((p → q)\wedge(q → p)) → (p\leftrightarrowq) | Biconditional introduction |
All rules use the basic logic operators. A complete table of "logic operators" is shown by a truth table, giving definitions of all the possible (16) truth functions of 2 boolean variables (p, q):
p | q | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | T | F | F | F | F | F | F | F | F | T | T | T | T | T | T | T | T | |||
T | F | F | F | F | F | T | T | T | T | F | F | F | F | T | T | T | T | |||
F | T | F | F | T | T | F | F | T | T | F | F | T | T | F | F | T | T | |||
F | F | F | T | F | T | F | T | F | T | F | T | F | T | F | T | F | T |
where T = true and F = false, and, the columns are the logical operators:
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples:
We can see also that, with the same premise, another conclusions are valid: columns 12, 14 and 15 are T.
With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15.
Machines and well-trained people use this look at table approach to do basic inferences, and to check if other inferences (for the same premises) can be obtained.
Consider the following assumptions: "If it rains today, then we will not go on a canoe today. If we do not go on a canoe trip today, then we will go on a canoe trip tomorrow. Therefore (Mathematical symbol for "therefore" is
\therefore
p
q
r
\begin{align} p → q\\ q → r\\ \therefore\overline{p → r}\\ \end{align}
Consider a more complex set of assumptions: "It is not sunny today and it is colder than yesterday". "We will go swimming only if it is sunny", "If we do not go swimming, then we will have a barbecue", and "If we will have a barbecue, then we will be home by sunset" lead to the conclusion "We will be home by sunset."Proof by rules of inference: Let
p
q
r
s
t
\negp\wedgeq,r → p,\negr → s
s → t
t
Step | Reason | |
---|---|---|
1. \negp\wedgeq | Hypothesis | |
2. \negp | Simplification using Step 1 | |
3. r → p | Hypothesis | |
4. \negr | Modus tollens using Step 2 and 3 | |
5. \negr → s | Hypothesis | |
6. s | Modus ponens using Step 4 and 5 | |
7. s → t | Hypothesis | |
8. t | Modus ponens using Step 6 and 7 |