This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]
These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.
Manufacturer | Name/codenamedesignation | Architecture | Layout | data-sort-type=number | Fidelity (%) ! | Qubits (physical) | data-sort-type="isoDate" | Release date ! | data-sort-type=number | Quantum volume |
---|---|---|---|---|---|---|---|---|---|---|
Alpine Quantum Technologies | PINE System[2] | Trapped ion | 24[3] | 128[4] | ||||||
Atom Computing | Phoenix | Neutral atoms in optical lattices | 100[5] | |||||||
Atom Computing | N/A | Neutral atoms in optical lattices | 1180[6] | October 2023 | ||||||
N/A | N/A | 99.5 | 20 | |||||||
N/A | 7×7 lattice | 99.7[7] | 49[8] | data-sort-value="2017-09-01" | Q4 2017 (planned) | |||||
Bristlecone | 6×12 lattice | 99 (readout) 99.9 (1 qubit) 99.4 (2 qubits) | 72[9] [10] | |||||||
9×6 lattice | N/A | 53 effective (54 total) | ||||||||
IBM Q 5 Tenerife | bow tie | 99.897 (average gate) 98.64 (readout) | 5 | |||||||
IBM | IBM Q 5 Yorktown | Superconducting | bow tie | 99.545 (average gate) 94.2 (readout) | 5 | |||||
IBM | IBM Q 14 Melbourne | Superconducting | N/A | 99.735 (average gate) 97.13 (readout) | 14 | |||||
IBM | IBM Q 16 Rüschlikon | Superconducting | 2×8 lattice | 99.779 (average gate) 94.24 (readout) | 16[11] | (Retired: 26 September 2018)[12] | ||||
IBM | IBM Q 17 | N/A | N/A | 17 | ||||||
IBM | IBM Q 20 Tokyo | 5×4 lattice | 99.812 (average gate) 93.21 (readout) | 20[13] | ||||||
IBM | IBM Q 20 Austin | Superconducting | 5×4 lattice | N/A | 20 | data-sort-value="2018-07-04" | (Retired: 4 July 2018) | |||
IBM | IBM Q 50 prototype | Superconducting transmon | N/A | N/A | 50 | |||||
IBM | IBM Q 53 | N/A | N/A | 53 | ||||||
IBM | IBM Eagle | Superconducting | N/A | N/A | 127[14] | |||||
IBM | IBM Osprey[15] | Superconducting | N/A | N/A | 433 | |||||
IBM | IBM Condor[16] | Superconducting | N/A | N/A | 1121 | December 2023 | ||||
IBM | IBM Heron | Superconducting | N/A | N/A | 133 | December 2023 | ||||
IBM | IBM Armonk[17] | Superconducting | Single Qubit | N/A | 1 | |||||
IBM | IBM Ourense | Superconducting | T | N/A | 5 | |||||
IBM | IBM Vigo | Superconducting | T | N/A | 5 | |||||
IBM | IBM London | Superconducting | T | N/A | 5 | |||||
IBM | IBM Burlington | Superconducting | T | N/A | 5 | |||||
IBM | IBM Essex | Superconducting | T | N/A | 5 | |||||
IBM | IBM Athens[18] | Superconducting | N/A | 5 | 32[19] | |||||
IBM | IBM Belem | Superconducting | Falcon r4T | N/A | 5 | 16 | ||||
IBM | IBM Bogotá | Superconducting | Falcon r4L | N/A | 5 | 32 | ||||
IBM | IBM Casablanca | Superconducting | Falcon r4H | N/A | 7 | data-sort-value="2022-03" | (Retired – March 2022) | 32 | ||
IBM | IBM Dublin | Superconducting | N/A | 27 | 64 | |||||
IBM | IBM Guadalupe | Superconducting | Falcon r4P | N/A | 16 | 32 | ||||
IBM | IBM Kolkata | Superconducting | N/A | 27 | 128 | |||||
IBM | IBM Lima | Superconducting | Falcon r4T | N/A | 5 | 8 | ||||
IBM | IBM Manhattan | Superconducting | N/A | 65 | 32 | |||||
IBM | IBM Montreal | Superconducting | Falcon r4 | N/A | 27 | 128 | ||||
IBM | IBM Mumbai | Superconducting | Falcon r5.1 | N/A | 27 | 128 | ||||
IBM | IBM Paris | Superconducting | N/A | 27 | 32 | |||||
IBM | IBM Quito | Superconducting | Falcon r4T | N/A | 5 | 16 | ||||
IBM | IBM Rome | Superconducting | N/A | 5 | 32 | |||||
IBM | IBM Santiago | Superconducting | N/A | 5 | 32 | |||||
IBM | IBM Sydney | Superconducting | Falcon r4 | N/A | 27 | 32 | ||||
IBM | IBM Toronto | Superconducting | Falcon r4 | N/A | 27 | 32 | ||||
17-Qubit Superconducting Test Chip | 40-pin cross gap | N/A | 17[20] [21] | |||||||
Tangle Lake | 108-pin cross gap | N/A | 49[22] | |||||||
Intel | Tunnel Falls | Semiconductor spin qubits | 12[23] | |||||||
IonQ | Harmony | Trapped ion | All-to-All | 11[24] | 8 | |||||
IonQ | Aria | Trapped ion | All-to-All | 25 | ||||||
IonQ | Forte | Trapped ion | 32x1 chain[25] All-to-All | 99.98 (1 qubit) 98.5–99.3 (2 qubit) | 32 | |||||
IQM | - | Star | 99.91 (1 qubit) 99.14 (2 qubits) | 5[26] | [27] | N/A | ||||
IQM | - | Square lattice | 99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max) | 20 | [28] | 16[29] | ||||
M Squared Lasers | Maxwell | Neutral atoms in optical lattices | 99.5 (3-qubit gate), 99.1 (4-qubit gate)[30] | 200[31] | ||||||
Oxford Quantum Circuits | Lucy[32] | Superconducting | 8 | |||||||
Oxford Quantum Circuits | OQC Toshiko[33] | Superconducting | 32 | |||||||
Quandela | Ascella | Photonics | N/A | 99.6 (1 qubit) 93.8 (2 qubits) 86.0 (3 qubits) | 6[34] | [35] | ||||
QuTech at TU Delft | Spin-2 | Semiconductor spin qubits | 99 (average gate) 85 (readout)[36] | 2 | ||||||
QuTech at TU Delft | - | Semiconductor spin qubits | 6[37] | |||||||
QuTech at TU Delft | Starmon-5 | Superconducting | X configuration | 97 (readout)[38] | 5 | |||||
Quantinuum | H2[39] | Trapped ion | Racetrack, All-to-All | 99.997 (1 qubit) 99.8 (2 qubit) | 56[40] (earlier 32) | 65,536[41] | ||||
Quantinuum | H1-1[42] | Trapped ion | 15×15 (Circuit Size) | 99.996 (1 qubit) 99.914 (2 qubit) | 20 | 1,048,576[43] | ||||
Quantinuum | H1-2 | Trapped ion | All-to-All | 99.996 (1 qubit) 99.7 (2 qubit) | 12 | 4096[44] | ||||
Quantware | Soprano[45] | Superconducting | 99.9 (single-qubit gates) | 5 | ||||||
Quantware | Contralto[46] | Superconducting | 99.9 (single-qubit gates) | 25 | [47] | |||||
Quantware | Tenor[48] | Superconducting | 64 | |||||||
Rigetti | Agave | Superconducting | N/A | 96 (Single-qubit gates)87 (Two-qubit gates) | 8 | [49] | ||||
Rigetti | Acorn | Superconducting transmon | N/A | 98.63 (Single-qubit gates)87.5 (Two-qubit gates) | 19[50] | |||||
Rigetti | Aspen-1 | Superconducting | N/A | 93.23 (Single-qubit gates)90.84 (Two-qubit gates) | 16 | |||||
Rigetti | Aspen-4 | Superconducting | 99.88 (Single-qubit gates)94.42 (Two-qubit gates) | 13 | ||||||
Rigetti | Aspen-7 | Superconducting | 99.23 (Single-qubit gates)95.2 (Two-qubit gates) | 28 | ||||||
Rigetti | Aspen-8 | Superconducting | 99.22 (Single-qubit gates)94.34 (Two-qubit gates) | 31 | ||||||
Rigetti | Aspen-9 | Superconducting | 99.39 (Single-qubit gates)94.28 (Two-qubit gates) | 32 | ||||||
Rigetti | Aspen-10 | Superconducting | 99.37 (Single-qubit gates)94.66 (Two-qubit gates) | 32 | ||||||
Rigetti | Aspen-11 | Superconducting | Octagonal[51] | 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY) | 40 | |||||
Rigetti | Aspen-M-1 | Superconducting transmon | Octagonal | 99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY) | 80 | 8 | ||||
Rigetti | Aspen-M-2 | Superconducting transmon | 99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY) | 80 | ||||||
Rigetti | Aspen-M-3 | Superconducting transmon | N/A | 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) | 80[52] | |||||
Rigetti | Ankaa-2 | Superconducting transmon | N/A | 98 (Two-qubit gates) | 84[53] | |||||
RIKEN | RIKEN[54] | Superconducting | N/A | N/A | 53 effective (64 total)[55] [56] | N/A | ||||
SaxonQ | Princess | Nitrogen-vacancy center | 4[57] | |||||||
SpinQ | Triangulum | Nuclear magnetic resonance | 3[58] | |||||||
N/A | N/A | 76[59] [60] | ||||||||
USTC | Zuchongzhi | Superconducting | N/A | N/A | 62[61] | |||||
USTC | Zuchongzhi 2.1 | Superconducting | lattice[62] | 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout) | 66[63] | |||||
Xanadu | Borealis[64] | Photonics (Continuous-variable) | N/A | N/A | 216 | |||||
Xanadu | X8 [65] | Photonics (Continuous-variable) | N/A | N/A | 8 | |||||
Xanadu | X12 | Photonics (Continuous-variable) | N/A | N/A | 12 | |||||
Xanadu | X24 | Photonics (Continuous-variable) | N/A | N/A | 24 | |||||
CAS | Xiaohong[66] | Superconducting | N/A | N/A | 504 |
These QPUs are based on quantum annealing, not to be confused with digital annealing.[67]
Manufacturer | Name/Codename/Designation | Architecture | Layout | Fidelity (%) | Qubits | Release date | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D-Wave One (Rainier) | Superconducting | N/A | 128 | ||||||||||||
D-Wave Two | Superconducting | N/A | 512 | ||||||||||||
D-Wave | D-Wave 2X | Superconducting | C12 = Chimera(12,12,4) = 12×12 K4,4 | N/A | 1152 | ||||||||||
D-Wave | D-Wave 2000Q | Superconducting | C16 = Chimera(16,16,4) = 16×16 K4,4 | N/A | 2048 | ||||||||||
D-Wave | D-Wave Advantage | Superconducting | Pegasus P16[69] | N/A | 5760 | ||||||||||
D-Wave | D-Wave Advantage 2[70] [71] [72] [73] | Superconducting | Zephyr Z15[74] | N/A | 7000+ | Late 2024 either 2025 | Note: Quantum annealers are intended for use in specific technical applications. ---> |
These QPUs are based on analog Hamiltonian simulation.