List of quantum processors explained

This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published qubit numbers do not reflect the performance levels of the processor. This is instead achieved through benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

Manufacturer Name/codenamedesignationArchitecture Layout data-sort-type=number Fidelity (%) !Qubits (physical) data-sort-type="isoDate" Release date !data-sort-type=number Quantum volume
Alpine Quantum TechnologiesPINE System[2] Trapped ion24[3] 128[4]
Atom ComputingPhoenixNeutral atoms in optical lattices100[5]
Atom ComputingN/ANeutral atoms in optical lattices1180[6] October 2023
N/A N/A 99.520
N/A 7×7 lattice 99.7[7] 49[8] data-sort-value="2017-09-01" Q4 2017 (planned)
Google Bristlecone 6×12 lattice 99 (readout)
99.9 (1 qubit)
99.4 (2 qubits)
72[9] [10]
Google 9×6 lattice N/A 53 effective (54 total)
IBM Q 5 Tenerife bow tie 99.897 (average gate)
98.64 (readout)
5
IBMIBM Q 5 YorktownSuperconductingbow tie99.545 (average gate)
94.2 (readout)
5
IBMIBM Q 14 MelbourneSuperconductingN/A99.735 (average gate)
97.13 (readout)
14
IBM IBM Q 16 Rüschlikon Superconducting2×8 lattice 99.779 (average gate)
94.24 (readout)
16[11]
(Retired: 26 September 2018)[12]
IBM IBM Q 17 N/A N/A 17
IBM IBM Q 20 Tokyo 5×4 lattice 99.812 (average gate)
93.21 (readout)
20[13]
IBMIBM Q 20 AustinSuperconducting5×4 latticeN/A20data-sort-value="2018-07-04" (Retired: 4 July 2018)
IBM IBM Q 50 prototype Superconducting transmon N/A N/A 50
IBM IBM Q 53 N/A N/A 53
IBMIBM EagleSuperconductingN/AN/A127[14]
IBMIBM Osprey[15] SuperconductingN/AN/A433
IBMIBM Condor[16] SuperconductingN/AN/A1121December 2023
IBMIBM HeronSuperconductingN/AN/A133December 2023
IBMIBM Armonk[17] SuperconductingSingle QubitN/A1
IBMIBM OurenseSuperconductingTN/A5
IBMIBM VigoSuperconductingTN/A5
IBMIBM LondonSuperconductingTN/A5
IBMIBM BurlingtonSuperconductingTN/A5
IBMIBM EssexSuperconductingTN/A5
IBMIBM Athens[18] SuperconductingN/A532[19]
IBMIBM BelemSuperconductingFalcon r4TN/A516
IBMIBM BogotáSuperconductingFalcon r4LN/A532
IBMIBM CasablancaSuperconductingFalcon r4HN/A7data-sort-value="2022-03" (Retired – March 2022)32
IBMIBM DublinSuperconductingN/A2764
IBMIBM GuadalupeSuperconductingFalcon r4PN/A1632
IBMIBM KolkataSuperconductingN/A27128
IBMIBM LimaSuperconductingFalcon r4TN/A58
IBMIBM ManhattanSuperconductingN/A6532
IBMIBM MontrealSuperconductingFalcon r4N/A27128
IBMIBM MumbaiSuperconductingFalcon r5.1N/A27128
IBMIBM ParisSuperconductingN/A2732
IBMIBM QuitoSuperconductingFalcon r4TN/A516
IBMIBM RomeSuperconductingN/A532
IBMIBM SantiagoSuperconductingN/A532
IBMIBM SydneySuperconductingFalcon r4N/A2732
IBMIBM TorontoSuperconductingFalcon r4N/A2732
17-Qubit Superconducting Test Chip 40-pin cross gap N/A 17[20] [21]
Tangle Lake 108-pin cross gap N/A 49[22]
IntelTunnel FallsSemiconductor spin qubits12[23]
IonQHarmonyTrapped ionAll-to-All11[24] 8
IonQAriaTrapped ionAll-to-All25
IonQForteTrapped ion32x1 chain[25] All-to-All99.98 (1 qubit)
98.5–99.3 (2 qubit)
32
IQM- Star 99.91 (1 qubit)
99.14 (2 qubits)
5[26] [27] N/A
IQM- Square lattice 99.91 (1 qubit median)
99.944 (1 qubit max)
98.25 (2 qubits median)
99.1 (2 qubits max)
20[28] 16[29]
M Squared LasersMaxwellNeutral atoms in optical lattices99.5 (3-qubit gate), 99.1 (4-qubit gate)[30] 200[31]
Oxford Quantum CircuitsLucy[32] Superconducting8
Oxford Quantum CircuitsOQC Toshiko[33] Superconducting32
QuandelaAscellaPhotonicsN/A99.6 (1 qubit)
93.8 (2 qubits)
86.0 (3 qubits)
6[34] [35]
QuTech at TU DelftSpin-2Semiconductor spin qubits99 (average gate)
85 (readout)[36]
2
QuTech at TU Delft- Semiconductor spin qubits6[37]
QuTech at TU DelftStarmon-5SuperconductingX configuration97 (readout)[38] 5
QuantinuumH2[39] Trapped ionRacetrack, All-to-All99.997 (1 qubit)
99.8 (2 qubit)
56[40] (earlier 32)65,536[41]
QuantinuumH1-1[42] Trapped ion15×15 (Circuit Size)99.996 (1 qubit)
99.914 (2 qubit)
201,048,576[43]
QuantinuumH1-2 Trapped ionAll-to-All99.996 (1 qubit)
99.7 (2 qubit)
124096[44]
QuantwareSoprano[45] Superconducting99.9 (single-qubit gates)5
QuantwareContralto[46] Superconducting99.9 (single-qubit gates)25[47]
QuantwareTenor[48] Superconducting64
RigettiAgaveSuperconductingN/A96 (Single-qubit gates)87 (Two-qubit gates)8[49]
RigettiAcorn Superconducting transmon N/A 98.63 (Single-qubit gates)87.5 (Two-qubit gates)19[50]
RigettiAspen-1SuperconductingN/A93.23 (Single-qubit gates)90.84 (Two-qubit gates)16
RigettiAspen-4Superconducting99.88 (Single-qubit gates)94.42 (Two-qubit gates)13
RigettiAspen-7Superconducting99.23 (Single-qubit gates)95.2 (Two-qubit gates)28
RigettiAspen-8Superconducting99.22 (Single-qubit gates)94.34 (Two-qubit gates)31
RigettiAspen-9Superconducting99.39 (Single-qubit gates)94.28 (Two-qubit gates)32
RigettiAspen-10Superconducting99.37 (Single-qubit gates)94.66 (Two-qubit gates)32
RigettiAspen-11SuperconductingOctagonal[51] 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY)40
RigettiAspen-M-1Superconducting transmonOctagonal99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY)808
RigettiAspen-M-2Superconducting transmon99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY)80
RigettiAspen-M-3 Superconducting transmon N/A 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY)80[52]
RigettiAnkaa-2 Superconducting transmon N/A 98 (Two-qubit gates)84[53]
RIKENRIKEN[54] Superconducting N/A N/A 53 effective (64 total)[55] [56] N/A
SaxonQPrincessNitrogen-vacancy center4[57]
SpinQTriangulumNuclear magnetic resonance3[58]
N/A N/A 76[59] [60]
USTCZuchongzhi SuperconductingN/A N/A 62[61]
USTCZuchongzhi 2.1Superconductinglattice[62] 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout)66[63]
XanaduBorealis[64] Photonics (Continuous-variable)N/AN/A216
XanaduX8 [65] Photonics (Continuous-variable)N/AN/A8
XanaduX12Photonics (Continuous-variable)N/AN/A12
XanaduX24Photonics (Continuous-variable)N/AN/A24
CASXiaohong[66] SuperconductingN/AN/A504

Annealing quantum processors

These QPUs are based on quantum annealing, not to be confused with digital annealing.[67]

Manufacturer Name/Codename/DesignationArchitecture Layout Fidelity (%) Qubits Release date
D-Wave One (Rainier) Superconducting N/A 128
D-Wave Two Superconducting N/A 512
D-WaveD-Wave 2X Superconducting C12 = Chimera(12,12,4) = 12×12 K4,4 N/A 1152
D-WaveD-Wave 2000Q Superconducting C16 = Chimera(16,16,4) = 16×16 K4,4 N/A 2048
D-WaveD-Wave Advantage Superconducting Pegasus P16[69] N/A 5760
D-WaveD-Wave Advantage 2[70] [71] [72] [73] SuperconductingZephyr Z15[74] N/A7000+Late 2024 either 2025Note: Quantum annealers are intended for use in specific technical applications. --->

Analog quantum processors

These QPUs are based on analog Hamiltonian simulation.

See also

Notes and References

  1. Wack. Andrew. Paik. Hanhee. Javadi-Abhari. Ali. Jurcevic. Petar. Faro. Ismael. Gambetta. Jay M.. Johnson. Blake R.. A practical heuristic for finding graph minors. 29 Oct 2021. 2110.14108. quant-ph.
  2. Web site: THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER. 21 Feb 2023. AQT.
  3. Pogorelov. I.. Feldker. T.. al.. Et. Compact Ion-Trap Quantum Computing Demonstrator. PRX Quantum . 2021-06-07. 2 . 2 . 020343 . 10.1103/PRXQuantum.2.020343 . 2101.11390. 2021PRXQ....2b0343P . 231719119 .
  4. Web site: STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128. 24 Feb 2023. AQT. 8 February 2023 .
  5. Barnes. Katrina . Battaglino. Peter. al.. Et. Assembly and coherent control of a register of nuclear spin qubits. Nature Communications . 2022 . 13 . 1 . 2779 . 10.1038/s41467-022-29977-z . 35589685 . 9120523 . 2108.04790. 2022NatCo..13.2779B . 236965948 .
  6. Web site: Wilkins . Alex . October 24, 2023 . Record-breaking quantum computer has more than 1000 qubits . 2024-01-01 . New Scientist . en-US.
  7. News: Lant . Karla . Google is Closer Than Ever to a Quantum Computer Breakthrough . Futurism . 2017-06-23 . 2017-10-18.
  8. News: Simonite . Tom . Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy . . 2017-04-21 . 2017-10-18.
  9. .
  10. News: Greene . Tristan . Google reclaims quantum computer crown with 72 qubit processor . . 2018-03-06 . 2018-06-27.
  11. Web site: IBM Builds Its Most Powerful Universal Quantum Computing Processors . IBM . 2017-05-17 . 2017-10-18.
  12. Web site: Quantum devices & simulators. 2018-06-05 . IBM Q . en-US. 2019-03-29.
  13. News: IBM Announces Advances to IBM Quantum Systems & Ecosystem. 10 November 2017. 10 November 2017.
  14. News: Brooks . Michael . January–February 2024 . Bring on the noise . MIT Technology Review . 50 . Cambridge, Massachusetts . 127 . 1.
  15. News: Padavic-Callaghan . Karmela . December 9, 2023 . IBM unveils 1000-qubit computer . en . 13 . New Scientist.
  16. Web site: IBM's 'Condor' quantum computer has more than 1000 qubits . 2023-12-21 . New Scientist . en-US.
  17. Web site: IBM Q Experience. IBM Q Experience. en. 2020-01-04.
  18. Web site: IBM Quantum . 2023-06-18 . IBM Quantum . en.
  19. Web site: IBM Blog . 2023-06-18 . IBM Blog . en-US.
  20. Web site: Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech . 2017-10-10 . 2017-10-18.
  21. News: Novet . Jordan . Intel shows off its latest chip for quantum computing as it looks past Moore's Law . . 2017-10-10 . 2017-10-18.
  22. Web site: CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy . 2018-01-09 . 2018-01-14.
  23. Web site: Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing. 2023-07-09. Intel Newsroom.
  24. Web site: IonQ Trapped Ion Quantum Computing . 2023-05-02 . IonQ . en.
  25. 2009.11482 . Egan . Laird . Debroy . Dripto M. . Noel . Crystal . Risinger . Andrew . Zhu . Daiwei . Biswas . Debopriyo . Newman . Michael . Li . Muyuan . Brown . Kenneth R. . Cetina . Marko . Monroe . Christopher . Fault-Tolerant Operation of a Quantum Error-Correction Code . 2020 . quant-ph .
  26. Web site: The Power of Co-Design, Hermanni Heimonen, IQM . Youtube . 2022-12-08 . 2023-06-09.
  27. Web site: Finland's first 5-qubit quantum computer is now operational . VTTresearch.com . 2022-12-08 . 2023-06-09.
  28. Web site: Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues . meetiqm.com. 2023-10-09 .
  29. Web site: Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024. quantumzeitgeist.com. 2023-10-10 .
  30. 2112.13025 . 10.1088/2058-9565/ac823a . High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage . 2022 . Pelegrí . G. . Daley . A. J. . Pritchard . J. D. . Quantum Science and Technology . 7 . 4 . 045020 . 2022QS&T....7d5020P . 245502083 .
  31. Web site: MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR. 12 April 2023. M Squared.
  32. Web site: Lucy. 20 Feb 2023. Oxford Quantum Circuits. 30 November 2021 .
  33. Web site: OQC Toshiko. 27 Nov 2023. Oxford Quantum Circuits. 24 November 2023 .
  34. Pont. M.. Corrielli. G.. Fyrillas. A.. al.. et. High-fidelity generation of four-photon GHZ states on-chip. 2022-11-29. 2211.15626. quant-ph.
  35. News: La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online) . Le Monde.fr . 22 November 2022 . Le Monde.
  36. Web site: Spin-2. 5 May 2021. Quantum Inspire.
  37. Web site: Six-qubit silicon quantum processor sets a record. 2023-07-09. PhysicsWorld. 19 October 2022 .
  38. Web site: Starmon-5. 4 May 2021. Quantum Inspire.
  39. Web site: Quantinuum H2 Product Data Sheet .
  40. Web site: Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation . 2024-06-06 . www.quantinuum.com . en.
  41. Web site: Quantinuum Hardware System Model H2 . 2023-05-12 . www.quantinuum.com . en.
  42. Web site: Quantinuum System Model H1 Product Data Sheet . 8 Jul 2023. Quantinuum.
  43. Web site: Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume . 2024-04-17 . www.quantinuum.com . en.
  44. Web site: Quantinuum Announces Quantum Volume 4096 Achievement. 24 Feb 2023. Quantinuum.
  45. Web site: Soprano specs. 1 Feb 2023. Quantware.
  46. Web site: Contralto specs. 21 Feb 2023. Quantware.
  47. Web site: QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU. 21 Feb 2023. Quantware.
  48. Web site: Tenor specs. 26 Feb 2023. Quantware.
  49. Web site: QPU . Rigetti Computing . 2019-03-24 . 2019-05-16 . https://web.archive.org/web/20190516231438/https://www.rigetti.com/qpu . dead .
  50. Web site: Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2 . 2017-12-18 . 2018-03-21.
  51. Pelofske . Elijah . Bärtschi . Andreas . Eidenbenz . Stephan . 2022 . Quantum Volume in Practice: What Users Can Expect from NISQ Devices . IEEE Transactions on Quantum Engineering . 3 . 1–19 . 10.1109/TQE.2022.3184764 . 2203.03816 . 247315182 . 2689-1808.
  52. Web site: Aspen-M-3 Quantum Processor. 2023-02-20.
  53. Rigetti & Company LLC . 2024-01-04 . Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs . 2024-01-23 . GlobeNewswire News Room . en.
  54. Web site: Japan's first homemade quantum computer goes online . 2024-01-25 . www.riken.jp . en.
  55. Web site: Japanese joint research group launches quantum computing cloud service . 2024-01-25 . Fujitsu Global . en.
  56. Web site: RIKEN and Fujitsu develop 64-qubit quantum computer . 2024-01-25 . www.riken.jp . en.
  57. Web site: All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ. 16 Jul 2024.
  58. Web site: Triangulum3 qubits desktop NMR quantum computer. 24 Feb 2023. AQT.
  59. Ball. Philip. 2020-12-03. Physicists in China challenge Google's 'quantum advantage'. Nature. en. 588. 7838. 380. 10.1038/d41586-020-03434-7. 33273711. 2020Natur.588..380B. free.
  60. Web site: Letzter . Rafi – Staff Writer 07 . 7 December 2020 . China claims fastest quantum computer in the world . 2020-12-19 . livescience.com . en.
  61. Ball. Philip. 2020-12-03. Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Physical Review Letters. 127. 18. 180501 . 10.1103/PhysRevLett.127.180501. 34767433 . 2106.14734 . 2021PhRvL.127r0501W . 235658633 .
  62. 2109.03494 . Zhu . Qingling . Cao . Sirui . Chen . Fusheng . Chen . Ming-Cheng . Chen . Xiawei . Chung . Tung-Hsun . Deng . Hui . Du . Yajie . Fan . Daojin . Gong . Ming . Guo . Cheng . Guo . Chu . Guo . Shaojun . Han . Lianchen . Hong . Linyin . Huang . He-Liang . Huo . Yong-Heng . Li . Liping . Li . Na . Li . Shaowei . Li . Yuan . Liang . Futian . Lin . Chun . Lin . Jin . Qian . Haoran . Qiao . Dan . Rong . Hao . Su . Hong . Sun . Lihua . Wang . Liangyuan . Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling . Science Bulletin . 2021 . 67 . 3 . 240–245 . 10.1016/j.scib.2021.10.017 . 36546072 . 237442167 . 1 .
  63. Wu . Yulin . Bao . Wan-Su . Cao . Sirui . Chen . Fusheng . Chen . Ming-Cheng . Chen . Xiawei . Chung . Tung-Hsun . Deng . Hui . Du . Yajie . Fan . Daojin . Gong . Ming . Guo . Cheng . Guo . Chu . Guo . Shaojun . Han . Lianchen . 2021-10-25 . Strong Quantum Computational Advantage Using a Superconducting Quantum Processor . Physical Review Letters . en . 127 . 18 . 180501 . 10.1103/PhysRevLett.127.180501 . 34767433 . 2106.14734 . 2021PhRvL.127r0501W . 235658633 . 0031-9007.
  64. Madsen . Lars S. . Laudenbach . Fabian . Askarani . Mohsen Falamarzi . Rortais . Fabien . Vincent . Trevor . Bulmer . Jacob F. F. . Miatto . Filippo M. . Neuhaus . Leonhard . Helt . Lukas G. . Collins . Matthew J. . Lita . Adriana E. . June 2022 . Quantum computational advantage with a programmable photonic processor . Nature . en . 606 . 7912 . 75–81 . 10.1038/s41586-022-04725-x . 35650354 . 9159949 . 2022Natur.606...75M . 249276257 . 1476-4687.
  65. Web site: A new kind of quantum. 2021-01-09. spie.org.
  66. Web site: China launches 504-qubit quantum chip, open to global users . www.chinadaily.com.cn/.
  67. Web site: Digital Annealer – Quantum Computing Technology . 12 April 2023 . Fujitsu.
  68. Cai. Jun. Macready. Bill. Roy. Aidan. A practical heuristic for finding graph minors. 10 Jun 2014. 1406.2741. quant-ph.
  69. Boothby. Kelly. Bunyk. Paul. Raymond. Jack. Roy. Aidan. Next-Generation Topology of D-Wave Quantum Processors. 29 Feb 2020. 2003.00133. quant-ph.
  70. Web site: D-Wave Announces 1,200+ Qubit Advantage2™ Prototype in New, Lower-Noise Fabrication Stack, Demonstrating 20x Faster Time-to-Solution on Important Class of Hard Optimization Problems .
  71. Web site: D-Wave Announces Availability of 1,200+ Qubit Advantage2™ Prototype in the Leap™ Quantum Cloud Service, Making its Most Performant System Available to Customers Today .
  72. https://www.dwavesys.com/media/xvjpraig/clarity-roadmap_digital_v2.pdf
  73. https://www.dwavesys.com/media/eixhdtpa/14-1063a-a_the_d-wave_advantage2_prototype-4.pdf
  74. Web site: Ahead of the Game: D-Wave Delivers Prototype of Next-Generation Advantage2 Annealing Quantum Computer .
  75. News: Lee . Jane . 2 November 2022 . Boston-based quantum computer QuEra joins Amazon's cloud for public access . Reuters.