List of quantum logic gates explained

In gate-based quantum computing, various sets of quantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties. Controlled or conjugate transpose (adjoint) versions of some of these gates may not be listed.

Identity gate and global phase

Name
  1. qubits
Operator symbolMatrixCircuit diagramPropertiesRefs
Identity,no-op1 (any)I,\;\mathbb,

\begin{bmatrix}1&0\ 0&1\end{bmatrix}


or
Global phase1 (any)\mathrm, \mathrm or \mathrm e^I

ei\delta\begin{bmatrix}1&0\ 0&1\end{bmatrix}

  • Continuous parameters:

\delta

(period

2\pi

)

\exp(i\deltaI)

The identity gate is the identity operation

I|\psi\rangle=|\psi\rangle

, most of the times this gate is not indicated in circuit diagrams, but it is useful when describing mathematical results.

It has been described as being a "wait cycle",[1] and a NOP.[2]

The global phase gate introduces a global phase

ei\varphi

to the whole qubit quantum state. A quantum state is uniquely defined up to a phase. Because of the Born rule, a phase factor has no effect on a measurement outcome:

|ei\varphi|=1

for any

\varphi

.

Because

ei\delta|\psi\rangle|\phi\rangle=ei\delta(|\psi\rangle|\phi\rangle),

when the global phase gate is applied to a single qubit in a quantum register, the entire register's global phase is changed.

Also,

Ph(0)=I.

These gates can be extended to any number of qubits or qudits.

Clifford qubit gates

This table includes commonly used Clifford gates for qubits.[3] [4] [5]

!Names!# qubits!Operator symbol!Matrix!Circuit diagram!Some properties!Refs
Pauli X,
NOT,
bit flip
1X,\;\mathrm,\;\sigma_x

\begin{bmatrix}0&1\ 1&0\end{bmatrix}


or
[6]
Pauli Y1Y,\;\sigma_y

\begin{bmatrix}0&-i\i&0\end{bmatrix}

  • Hermitian
  • Pauli group
  • Traceless
  • Involutory
Pauli Z,
phase flip
1Z,\;\sigma_z

\begin{bmatrix}1&0\ 0&-1\end{bmatrix}

  • Hermitian
  • Pauli group
  • Traceless
  • Involutory
Phase gate S,
square root of Z
1S,\;P,\;\sqrt

\begin{bmatrix}1&0\ 0&i\end{bmatrix}

Square root of X,
square root of NOT
1\sqrt, V, \sqrt,\;\mathrm
1
2

\begin{bmatrix}1+i&1-i\ 1-i&1+i\end{bmatrix}

[7]
Hadamard,
Walsh-Hadamard
1H
1
\sqrt{2
}\begin 1 & 1 \\ 1 & -1\end
  • Hermitian
  • Traceless
  • Involutory
Controlled NOT,
controlled-X,
controlled-bit flip,
reversible exclusive OR,
Feynman
2\mathrm, \mathrm,\;\mathrm

\begin{bmatrix}1&0&0&0\ 0&1&0&0\\0&0&0&1\ 0&0&1&0\end{bmatrix}


\begin{bmatrix}1&0&0&0\ 0&0&0&1\\0&0&1&0\ 0&1&0&0\end{bmatrix}


  • Hermitian
  • Involutory

Implementation:

Anticontrolled-NOT,
anticontrolled-X,
zero control,
control-on-0-NOT,
reversible exclusive NOR
2\overline\mathrm X, \text, \mathrm

\begin{bmatrix}0&1&0&0\ 1&0&0&0\\0&0&1&0\ 0&0&0&1\end{bmatrix}

  • Hermitian
  • Involutory
Controlled-Z,
controlled sign flip,
controlled phase flip
2\mathrm, \mathrm, \mathrm, \mathrm

\begin{bmatrix}1&0&0&0\ 0&1&0&0\\0&0&1&0\ 0&0&0&-1\end{bmatrix}

  • Hermitian
  • Involutory
  • Symmetrical

Implementation:

  • Duan-Kimble gate
Double-controlled NOT2\mathrm

\begin{bmatrix}1&0&0&0\\ 0&0&1&0\\ 0&0&0&1\\ 0&1&0&0\end{bmatrix}

[8]
Swap2\mathrm

\begin{bmatrix}1&0&0&0\ 0&0&1&0\\0&1&0&0\ 0&0&0&1\end{bmatrix}


or
  • Hermitian
  • Involutory
  • Symmetrical
Imaginary swap2

iSWAP

\begin{bmatrix}1&0&0&0\\0&0&i&0\\0&i&0&0\\0&0&0&1\end{bmatrix}


or
  • Special unitary
  • Symmetrical
Other Clifford gates, including higher dimensional ones are not included here but by definition can be generated using H,S and \mathrm.

Note that if a Clifford gate A is not in the Pauli group,

\sqrt{A}

or controlled-A are not in the Clifford gates.

The Clifford set is not a universal quantum gate set.

Non-Clifford qubit gates

Relative phase gates

Names
  1. qubits
Operator symbolMatrixCircuit diagramPropertiesRefs
Phase shift 1P(\varphi),\;R(\varphi),\;u_1(\varphi)

\begin{bmatrix}1&0\ 0&ei\end{bmatrix}

  • Continuous parameters:

\varphi

(period

2\pi

)
[9] [10]
Phase gate T,
π/8 gate,
fourth root of Z
1T,P(\pi/4) or \sqrt[4]

\begin{bmatrix}1&0\ 0&ei\pi\end{bmatrix}

Controlled phase2\mathrm(\varphi),\mathrm(\varphi)

\begin{bmatrix}1&0&0&0\ 0&1&0&0\ 0&0&1&0\ 0&0&0&ei\end{bmatrix}

  • Continuous parameters:

\varphi

(period

2\pi

)
  • Symmetrical

Implementation:

Controlled phase S2

CS,controlled-S

\begin{bmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&1&0\\ 0&0&0&i \end{bmatrix}

  • Symmetrical
The phase shift is a family of single-qubit gates that map the basis states

P(\varphi)|0\rangle=|0\rangle

and

P(\varphi)|1\rangle=ei\varphi|1\rangle

. The probability of measuring a

|0\rangle

or

|1\rangle

is unchanged after applying this gate, however it modifies the phase of the quantum state. This is equivalent to tracing a horizontal circle (a line of latitude), or a rotation along the z-axis on the Bloch sphere by

\varphi

radians. A common example is the T gate where \varphi = \frac (historically known as the

\pi/8

gate), the phase gate. Note that some Clifford gates are special cases of the phase shift gate:

P(0)=I,P(\pi)=Z;P(\pi/2)=S.

The argument to the phase shift gate is in U(1), and the gate performs a phase rotation in U(1) along the specified basis state (e.g.

P(\varphi)

rotates the phase about . Extending

P(\varphi)

to a rotation about a generic phase of both basis states of a 2-level quantum system (a qubit) can be done with a series circuit:

P(\beta)XP(\alpha)X=\begin{bmatrix}ei\alpha&0\ 0&ei\beta\end{bmatrix}

. When

\alpha=-\beta

this gate is the rotation operator

Rz(2\beta)

gate and if

\alpha=\beta

it is a global phase.

The T gate's historic name of

\pi/8

gate comes from the identity

Rz(\pi/4)\operatorname{Ph}\left(

\pi
8

\right)=P(\pi/4)

, where

Rz(\pi/4)=\begin{bmatrix}e-i\pi/8&0\ 0&ei\pi/8\end{bmatrix}

.

Arbitrary single-qubit phase shift gates

P(\varphi)

are natively available for transmon quantum processors through timing of microwave control pulses.[12] It can be explained in terms of change of frame.[13] [14]

As with any single qubit gate one can build a controlled version of the phase shift gate. With respect to the computational basis, the 2-qubit controlled phase shift gate is: shifts the phase with

\varphi

only if it acts on the state

|11\rangle

:

|a,b\rangle\mapsto\begin{cases} ei\varphi|a,b\rangle&fora=b=1\\ |a,b\rangle&otherwise. \end{cases}

The controlled-Z (or CZ) gate is the special case where

\varphi=\pi

.

The controlled-S gate is the case of the controlled-

P(\varphi)

when

\varphi=\pi/2

and is a commonly used gate.

Rotation operator gates

Names
  1. qubits
Operator symbolExponential formMatrixCircuit diagramPropertiesRefs
Rotation about x-axis 1R_x(\theta)

\exp(-iX\theta/2)

{\begin{bmatrix}\cos(\theta/2)&-i\sin(\theta/2)\\-i\sin(\theta/2)&\cos(\theta/2)\end{bmatrix}}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)
Rotation about y-axis 1R_y(\theta)

\exp(-iY\theta/2)

\begin{bmatrix}\cos(\theta/2)&-\sin(\theta/2)\\sin(\theta/2)&\cos(\theta/2)\end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)
Rotation about z-axis1R_z(\theta)

\exp(-iZ\theta/2)

\begin{bmatrix}\exp(-i\theta/2)&0\\0&\exp(i\theta/2) \end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)
The rotation operator gates

Rx(\theta),Ry(\theta)

and

Rz(\theta)

are the analog rotation matrices in three Cartesian axes of SO(3), along the x, y or z-axes of the Bloch sphere projection.

As Pauli matrices are related to the generator of rotations, these rotation operators can be written as matrix exponentials with Pauli matrices in the argument. Any

2 x 2

unitary matrix in SU(2) can be written as a product (i.e. series circuit) of three rotation gates or less. Note that for two-level systems such as qubits and spinors, these rotations have a period of . A rotation of (360 degrees) returns the same statevector with a different phase.[15]

We also have

Rb(-\theta)=Rb(\theta)\dagger

and

Rb(0)=I

for all

b\in\{x,y,z\}.

The rotation matrices are related to the Pauli matrices in the following way:

Rx(\pi)=-iX,Ry(\pi)=-iY,Rz(\pi)=-iZ.

It's possible to work out the adjoint action of rotations on the Pauli vector, namely rotation effectively by double the angle to apply Rodrigues' rotation formula:

Rn(-a)\vec{\sigma}R

i
a
2
\left(\hat{n
n(a)=e

\vec{\sigma}\right)}~\vec{\sigma}~

-i
a
2
\left(\hat{n
e

\vec{\sigma}\right)}=\vec{\sigma}\cos(a)+\hat{n} x \vec{\sigma}~\sin(a)+\hat{n}~\hat{n}\vec{\sigma}~(1-\cos(a))~.

Taking the dot product of any unit vector with the above formula generates the expression of any single qubit gate when sandwiched within adjoint rotation gates. For example, it can be shown that

Ry(-\pi/2)XRy(\pi/2)=\hat{x}(\hat{y} x \vec{\sigma})=Z

. Also, using the anticommuting relation we have

Ry(-\pi/2)XRy(\pi/2)=XRy(+\pi/2)Ry(\pi/2)=X(-iY)=Z

.

Rotation operators have interesting identities. For example,

Ry(\pi/2)Z=H

and

XRy(\pi/2)=H.

Also, using the anticommuting relations we have

ZRy(-\pi/2)=H

and

Ry(-\pi/2)X=H.

Global phase and phase shift can be transformed into each others with the Z-rotation operator:

Rz(\gamma)\operatorname{Ph}\left(

\gamma
2

\right)=P(\gamma)

.

The

\sqrt{X}

gate represents a rotation of about the x axis at the Bloch sphere

\sqrt{X}=ei\pi/4Rx(\pi/2)

.

Similar rotation operator gates exist for SU(3) using Gell-Mann matrices. They are the rotation operators used with qutrits.

Two-qubit interaction gates

Names
  1. qubits
Operator symbolExponential formMatrixCircuit diagramPropertiesRefs
XX interaction 2

Rxx(\phi)

,

XX(\phi)

\exp\left(-i

\phi
2

XX\right)

\begin{bmatrix} \cos\left(\phi
2

\right)&0&0&-i\sin\left(

\phi
2

\right)\\ 0&\cos\left(

\phi
2

\right)&-i\sin\left(

\phi
2

\right)&0\\ 0&-i\sin\left(

\phi
2

\right)&\cos\left(

\phi
2

\right)&0\\ -i\sin\left(

\phi
2

\right)&0&0&\cos\left(

\phi
2

\right)\\ \end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)Implementation:
YY interaction 2

Ryy(\phi)

,

YY(\phi)

\exp\left(-i

\phi
2

YY\right)

\begin{bmatrix} \cos\left(\phi
2

\right)&0&0&i\sin\left(

\phi
2

\right)\\ 0&\cos\left(

\phi
2

\right)&-i\sin\left(

\phi
2

\right)&0\\ 0&-i\sin\left(

\phi
2

\right)&\cos\left(

\phi
2

\right)&0\\ i\sin\left(

\phi
2

\right)&0&0&\cos\left(

\phi
2

\right)\\ \end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)Implementation:
ZZ interaction2,

ZZ(\phi)

{\displaystyle\exp\left(-i{

\phi
2
}Z\otimes Z\right)}

\begin{bmatrix} e-i&0&0&0\\ 0&ei&0&0\\ 0&0&ei&0\\ 0&0&0&e-i\\ \end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)
XY,
XX plus YY
2,

XY(\phi)

{\displaystyle\exp\left[-i

\phi
4

(XX+YY)\right]}

\begin{bmatrix}1&0&0&0\\ 0&\cos(\phi/2)&-i\sin(\phi/2)&0\\ 0&-i\sin(\phi/2)&\cos(\phi/2)&0\\ 0&0&0&1\\ \end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta

(period

4\pi

)
The qubit-qubit Ising coupling or Heisenberg interaction gates Rxx, Ryy and Rzz are 2-qubit gates that are implemented natively in some trapped-ion quantum computers, using for example the Mølmer–Sørensen gate procedure.[16] [17]

Note that these gates can be expressed in sinusoidal form also, for example

Rxx(\phi)=\exp\left(-i

\phi
2

XX\right)=\cos\left(

\phi
2

\right)II-i\sin\left(

\phi
2

\right)XX

.

The CNOT gate can be further decomposed as products of rotation operator gates and exactly a single two-qubit interaction gate, for example

CNOT

-i\pi
4
=e
R
y1
(-\pi/2)R
x1
(-\pi/2)R
x2

(-\pi/2)Rxx

(\pi/2)R
y1

(\pi/2).

The SWAP gate can be constructed from other gates, for example using the two-qubit interaction gates:

SWAP=

i\pi
4
e

Rxx(\pi/2)Ryy(\pi/2)Rzz(\pi/2)

.

In superconducting circuits, the family of gates resulting from Heisenberg interactions is sometimes called the fSim gate set. They can be realized using flux-tunable qubits with flux-tunable coupling,[18] or using microwave drives in fixed-frequency qubits with fixed coupling.[19]

Non-Clifford swap gates

Names
  1. qubits
Operator symbolMatrixCircuit diagramPropertiesRefs
Square root swap 2

\sqrt{SWAP

}

\begin{bmatrix}1&0&0&0\\ 0&

1
{2
} (1+i) & \frac (1-i) & 0 \\0 & \frac (1-i) & \frac (1+i) & 0 \\0 & 0 & 0 & 1 \\\end
Square root imaginary swap2

\sqrt{iSWAP

}

\begin{bmatrix}1&0&0&0\\0&

1
\sqrt{2
}&\frac&0\\0&\frac&\frac&0\\0&0&0&1\end
  • Special unitary
[20]
Swap (raised to a power)2

SWAP\alpha

\begin{bmatrix}1&0&0&0\\0&

1+ei&
2
1-ei&0\\0&
2
1-ei&
2
1+ei
2

&0\\0&0&0&1\end{bmatrix}

  • Continuous parameters:

\alpha

(period

2

)
Fredkin,controlled swap3

CSWAP

,

FREDKIN

\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&1\\ \end{bmatrix}


or
  • Hermitian
  • Involutory
  • Functionally complete reversible gate for Boolean algebra
The gate performs half-way of a two-qubit swap (see Clifford gates). It is universal such that any many-qubit gate can be constructed from only and single qubit gates. More than one application of the is required to produce a Bell state from product states. The gate arises naturally in systems that exploit exchange interaction.[3]

For systems with Ising like interactions, it is sometimes more natural to introduce the imaginary swap[21] or iSWAP.[22] [23] Note that

iSWAP=Rxx(-\pi/2)Ryy(-\pi/2)

and

\sqrt{iSWAP

}=R_(-\pi/4)R_(-\pi/4), or more generally

\sqrt[n]{iSWAP

}=R_(-\pi/2n)R_(-\pi/2n) for all real n except 0.

SWAPα arises naturally in spintronic quantum computers.

The Fredkin gate (also CSWAP or CS gate), named after Edward Fredkin, is a 3-bit gate that performs a controlled swap. It is universal for classical computation. It has the useful property that the numbers of 0s and 1s are conserved throughout, which in the billiard ball model means the same number of balls are output as input.

Other named gates

Names
  1. qubits
Operator symbolMatrixCircuit diagramPropertiesNamed afterRefs
General single qubit rotation1

U(\theta,\phi,λ)

{\begin{bmatrix}\cos(\theta/2)&-eiλ\sin(\theta/2)\\ei\phi\sin(\theta/2)&ei(λ+\phi)\cos(\theta/2)\end{bmatrix}}

  • Implements an arbitrary single-qubit rotation
  • Continuous parameters:

\theta,\phi,λ

(period

2\pi

)
OpenQASM U gate[24]
2

BARENCO(\alpha,\phi,\theta)

\begin{bmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&ei\cos\theta&-iei\sin\theta\\ 0&0&-iei\sin\theta&ei\cos\theta\end{bmatrix}

  • Implements a controlled arbitrary qubit rotation
  • Universal quantum gate
  • Continuous parameters:

\alpha,\phi,\theta

(period

2\pi

)
Adriano Barenco
Berkeley B2

B

\begin{bmatrix}\cos(\pi/8)&0&0&i\sin(\pi/8)\\ 0&\cos(3\pi/8)&i\sin(3\pi/8)&0\\ 0&i\sin(\pi/8)&\cos(\pi/8)&0\\ i\sin(\pi/8)&0&0&\cos(\pi/8)\\ \end{bmatrix}

  • Special unitary
  • Exponential form:

\exp\left[i

\pi
8

(2XX+YY)\right]

University of California Berkeley[25]
Controlled-V,controlled square root NOT2

CSX,controlled-\sqrt{X},

controlled-V

\begin{bmatrix}1&0&0&0\\ 0&1&0&0\\ 0&0&ei&e-i\\ 0&0&e-i&ei\end{bmatrix}

Core entangling, canonical decomposition2

N(a,b,c)

,

can(a,b,c)

\begin{bmatrix}eic\cos(a-b)&0&0&ieic\sin(a-b)\\ 0&e-ic\cos(a+b)&ie-ic\sin(a+b)&0\\ 0&ie-ic\sin(a+b)&e-ic\cos(a+b)&0\\ ieic\sin(a-b)&0&0&eic\cos(a-b)\\ \end{bmatrix}

  • Special unitary
  • Universal quantum gate
  • Exponential form

\exp\left[i(aXX+bYY+cZZ)\right]

  • Continuous parameters:

a,b,c

(period

2\pi

)
Dagwood Bumstead2

DB

\begin{bmatrix}1&0&0&0\\ 0&\cos(3\pi/8)&-i\sin(3\pi/8)&0\\ 0&-i\sin(3\pi/8)&\cos(3\pi/8)&0\\ 0&0&0&1\\ \end{bmatrix}

  • Special unitary
  • Exponential form:

\exp\left[-i

3\pi
16

(XX+YY)\right]

Comicbook Dagwood Bumstead[26] [27]
Echoed cross resonance2

ECR

1{\sqrt2}\begin{bmatrix}
0

&0&1&i\\ 0&0&i&1\\ 1&-i&0&0\\ -i&1&0&0\\ \end{bmatrix}

  • Special unitary
[28]
Fermionic simulation2

UfSim(\theta,\phi)

,

fSim(\theta,\phi)

\begin{bmatrix}1&0&0&0\\ 0&\cos(\theta)&-i\sin(\theta)&0\\ 0&-i\sin(\theta)&\cos(\theta)&0\\ 0&0&0&ei\phi\\ \end{bmatrix}

  • Special unitary
  • Continuous parameters:

\theta,\phi

(period

2\pi

)
[29] [30] [31]
Givens2

G(\theta)

,

Givens(\theta)

\begin{bmatrix}1&0&0&0\\ 0&\cos(\theta)&-\sin(\theta)&0\\ 0&\sin(\theta)&\cos(\theta)&0\\ 0&0&0&1\\ \end{bmatrix}

  • Special unitary
  • Exponential form:

\exp\left[-i

\theta
2

(YX-XY)\right]

  • Continuous parameters:

\theta,\phi

(period

2\pi

)
Givens rotations[32]
Magic2

l{M}

1{\sqrt{2}}\begin{bmatrix}
1

&i&0&0\\ 0&0&i&1\\ 0&0&i&-1\\ 1&-i&0&0\\ \end{bmatrix}

Sycamore2

syc

,

fSim(\pi/2,\pi/6)

\begin{bmatrix}1&0&0&0\\0&0&-i&0\\0&-i&0&0\\0&0&0&e-i\end{bmatrix}

Google's Sycamore processor[33]
CZ-SWAP2

CZS(\theta,\phi,\gamma)

,

\begin{bmatrix}1&0&0&0\\0&-ei\gamma\sin2(\theta/2)+\cos

2(\theta/2)&1
2

(1+ei\gamma)e-i\phi\sin(\theta)&0\\0&

1
2

(1+ei\gamma)ei\phi\sin(\theta)&-ei\gamma\cos2(\theta/2)+\sin2(\theta/2)&0\\0&0&0&-ei\gamma\end{bmatrix}

  • Continuous parameters:

\theta,\phi,\gamma

  • Submatrix of a controlled-CZS (CCZS)
[34]
Deutsch3

D\theta

,

D(\theta)

\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&i\cos\theta&\sin\theta\\ 0&0&0&0&0&0&\sin\theta&i\cos\theta\\ \end{bmatrix}

  • Continuous parameters:

\theta,\phi

(period

2\pi

)
  • Universal quantum gate
David Deutsch
Margolus,
simplified Toffoli
3

M

,

RCCX

\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&-1&0&0\\ 0&0&0&0&0&0&0&1\\ 0&0&0&0&0&0&1&0\\ \end{bmatrix}

  • Hermitian
  • Involutory
  • Special unitary
  • Functionally complete reversible gate for Boolean algebra
Norman Margolus[35] [36]
Peres 3

PG

,

Peres

\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&0&0&0&1\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ \end{bmatrix}

  • Functionally complete reversible gate for Boolean algebra
Asher Peres[37]
Toffoli,
controlled-controlled NOT
3

CCNOT,CCX,Toff

\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&1\\ 0&0&0&0&0&0&1&0\\ \end{bmatrix}

  • Hermitian
  • Involutory
  • Functionally complete reversible gate for Boolean algebra
Tommaso Toffoli

Fermionic-Fredkin,Controlled-fermionic SWAP
3

fFredkin

,

CCZS(\pi/2,0,0)

,

CfSWAP

\begin{bmatrix} 1&0&0&0&0&0&0&0\\ 0&1&0&0&0&0&0&0\\ 0&0&1&0&0&0&0&0\\ 0&0&0&1&0&0&0&0\\ 0&0&0&0&1&0&0&0\\ 0&0&0&0&0&0&1&0\\ 0&0&0&0&0&1&0&0\\ 0&0&0&0&0&0&0&-1\\ \end{bmatrix}

[38]

References

  1. Web site: IGate. qiskit.org. Qiskit online documentation.
  2. Web site: I operation. docs.microsoft.com. 28 July 2023 . Q# online documentation.
  3. Book: Williams . Explorations in Quantum Computing . . 2011 . 978-1-84628-887-6.
  4. Feynman . Richard P. . Quantum mechanical computers . Foundations of Physics . Springer Science and Business Media LLC . 16 . 6 . 1986 . 0015-9018 . 10.1007/bf01886518 . 507–531. 1986FoPh...16..507F . 122076550 .
  5. Barenco . Adriano . Bennett . Charles H. . Cleve . Richard . DiVincenzo . David P. . Margolus . Norman . Shor . Peter . Sleator . Tycho . Smolin . John A. . Weinfurter . Harald . Elementary gates for quantum computation . Physical Review A . American Physical Society (APS) . 52 . 5 . 1995-11-01 . 1050-2947 . 10.1103/physreva.52.3457 . 3457–3467. 9912645 . quant-ph/9503016. 1995PhRvA..52.3457B . 8764584 .
  6. Book: Nielsen, Michael A. . Quantum computation and quantum information . Cambridge University Press . Isaac L. Chuang . 2010 . 978-1-107-00217-3 . 10th anniversary . Cambridge . 665137861.
  7. Hung . W.N.N. . Xiaoyu Song . Guowu Yang . Jin Yang . Perkowski . M. . Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis . IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems . September 2006 . 25 . 9 . 1652–1663 . 0278-0070 . 10.1109/tcad.2005.858352 . 14123321 .
  8. Collins . Daniel . Linden . Noah . Popescu . Sandu . 2001-08-07 . Nonlocal content of quantum operations . Physical Review A . en . 64 . 3 . 032302 . 10.1103/PhysRevA.64.032302 . quant-ph/0005102 . 2001PhRvA..64c2302C . 29769034 . 1050-2947.
  9. Book: Pathak, Anirban . Elements of Quantum Computation and Quantum Communication . 2013-06-20 . Taylor & Francis . 978-1-4665-1792-9 . en.
  10. Book: Yanofsky . Noson S. . Quantum Computing for Computer Scientists . Mannucci . Mirco A. . 2008-08-11 . Cambridge University Press . 978-1-139-64390-0 . en.
  11. Fast Quantum Gates for Neutral Atoms . Phys. Rev. Lett. . 85 . 2000 . D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin. 10 . 2208–2211 . 10.1103/PhysRevLett.85.2208 . 10970499 . quant-ph/0004038 .
  12. Dibyendu Chatterjee, Arijit Roy. Progress of Theoretical and Experimental Physics. 7–8. A transmon-based quantum half-adder scheme. 2015. 2015. 9. 10.1093/ptep/ptv122. 2015PTEP.2015i3A02C. free.
  13. David C. . McKay . Christopher J. . Wood . Sarah . Sheldon . Jerry M. . Chow . Jay M. . Gambetta. Physical Review A. Efficient Z gates for quantum computing. 31 August 2017. 96. 2. 022330. 10.1093/ptep/ptv122. 1612.00858. 2015PTEP.2015i3A02C .
  14. Web site: qiskit.circuit.library.PhaseGate. IBM (qiskit documentation).
  15. Book: Griffiths . Introduction to Elementary Particles . . 2008 . 978-3-527-40601-2 . 2nd . 127–128 . David J. Griffiths.
  16. Web site: Monroe Conference . online.kitp.ucsb.edu.
  17. Web site: Demonstration of a small programmable quantum computer with atomic qubits . 2019-02-10.
  18. Foxen . B. . Neill . C. . Dunsworth . A. . Roushan . P. . Chiaro . B. . Megrant . A. . Kelly . J. . Chen . Zijun . Satzinger . K. . Barends . R. . Arute . F. . Arya . K. . Babbush . R. . Bacon . D. . Bardin . J. C. . Boixo . S. . Buell . D. . Burkett . B. . Chen . Yu . Collins . R. . Farhi . E. . Fowler . A. . Gidney . C. . Giustina . M. . Graff . R. . Harrigan . M. . Huang . T. . Isakov . S. V. . Jeffrey . E. . Jiang . Z. . Kafri . D. . Kechedzhi . K. . Klimov . P. . Korotkov . A. . Kostritsa . F. . Landhuis . D. . Lucero . E. . McClean . J. . McEwen . M. . Mi . X. . Mohseni . M. . Mutus . J. Y. . Naaman . O. . Neeley . M. . Niu . M. . Petukhov . A. . Quintana . C. . Rubin . N. . Sank . D. . Smelyanskiy . V. . Vainsencher . A. . White . T. C. . Yao . Z. . Yeh . P. . Zalcman . A. . Neven . H. . Martinis . J. M. . Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms . Physical Review Letters . 125 . 12 . 2020-09-15 . 0031-9007 . 10.1103/PhysRevLett.125.120504 . 120504. 33016760 . 2001.08343 .
  19. Nguyen . L.B. . Kim . Y. . Hashim . A. . Goss . N.. Marinelli . B.. Bhandari . B.. Das . D.. Naik . R.K.. Kreikebaum . J.M.. Jordan . A.. Santiago . D.I.. Siddiqi . I. . Programmable Heisenberg interactions between Floquet qubits . Nature Physics . 16 January 2024 . 20 . 1 . 240–246 . 10.1038/s41567-023-02326-7 . 2024NatPh..20..240N . free . 2211.10383.
  20. Book: Stancil . Daniel D. . Principles of Superconducting Quantum Computers . Byrd . Gregory T. . 2022-04-19 . John Wiley & Sons . 978-1-119-75074-1 . en.
  21. Rasmussen . S. E. . Zinner . N. T. . 2020-07-17 . Simple implementation of high fidelity controlled- i swap gates and quantum circuit exponentiation of non-Hermitian gates . Physical Review Research . en . 2 . 3 . 033097 . 2002.11728 . 2020PhRvR...2c3097R . 10.1103/PhysRevResearch.2.033097 . 2643-1564 . free.
  22. Schuch . Norbert . Siewert . Jens . 2003-03-10 . Natural two-qubit gate for quantum computation using the XY interaction . Physical Review A . en . 67 . 3 . 032301 . quant-ph/0209035 . 2003PhRvA..67c2301S . 10.1103/PhysRevA.67.032301 . 1050-2947 . 50823541.
  23. Dallaire-Demers . Pierre-Luc . Wilhelm . Frank K. . 2016-12-05 . Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model . Physical Review A . en . 94 . 6 . 062304 . 1606.00208 . 2016PhRvA..94f2304D . 10.1103/PhysRevA.94.062304 . 2469-9926 . 118408193.
  24. Cross . Andrew . Javadi-Abhari . Ali . Alexander . Thomas . De Beaudrap . Niel . Bishop . Lev S. . Heidel . Steven . Ryan . Colm A. . Sivarajah . Prasahnt . Smolin . John . Gambetta . Jay M. . Johnson . Blake R. . 2022 . OpenQASM 3: A Broader and Deeper Quantum Assembly Language . ACM Transactions on Quantum Computing . 3 . 3 . 1–50 . 10.1145/3505636 . 233476587 . 2643-6809. free . 2104.14722 .
  25. Zhang . Jun . Vala . Jiri . Sastry . Shankar . Whaley . K. Birgitta . 2004-07-07 . Minimum Construction of Two-Qubit Quantum Operations . Physical Review Letters . en . 93 . 2 . 020502 . 10.1103/PhysRevLett.93.020502 . 15323888 . quant-ph/0312193 . 2004PhRvL..93b0502Z . 9632700 . 0031-9007.
  26. Peterson . Eric C. . Crooks . Gavin E. . Smith . Robert S. . 2020-03-26 . Fixed-Depth Two-Qubit Circuits and the Monodromy Polytope . Quantum . en-GB . 4 . 247 . 10.22331/q-2020-03-26-247. 214690323 . free . 1904.10541 .
  27. AbuGhanem . M. . 2021-01-01 . Two-qubit Entangling Gate for Superconducting Quantum Computers . en . Rochester, NY. 10.2139/ssrn.4188257 . 4188257 . 252264545 .
  28. Córcoles . A. D. . Magesan . Easwar . Srinivasan . Srikanth J. . Cross . Andrew W. . Steffen . M. . Gambetta . Jay M. . Chow . Jerry M. . 2015-04-29 . Demonstration of a quantum error detection code using a square lattice of four superconducting qubits . Nature Communications . en . 6 . 1 . 6979 . 10.1038/ncomms7979 . 25923200 . 4421819 . 1410.6419 . 2015NatCo...6.6979C . 2041-1723.
  29. Kyriienko . Oleksandr . Elfving . Vincent E. . 2021-11-15 . Generalized quantum circuit differentiation rules . Physical Review A . en . 104 . 5 . 052417 . 10.1103/PhysRevA.104.052417 . 2108.01218 . 2021PhRvA.104e2417K . 10871/127818 . 236881494 . 2469-9926. free .
  30. Foxen . B. . Neill . C. . Dunsworth . A. . Roushan . P. . Chiaro . B. . Megrant . A. . Kelly . J. . Chen . Zijun . Satzinger . K. . Barends . R. . Arute . F. . Arya . K. . Babbush . R. . Bacon . D. . Bardin . J. C. . Boixo . S. . Buell . D. . Burkett . B. . Chen . Yu . Collins . R. . Farhi . E. . Fowler . A. . Gidney . C. . Giustina . M. . Graff . R. . Harrigan . M. . Huang . T. . Isakov . S. V. . Jeffrey . E. . Jiang . Z. . Kafri . D. . Kechedzhi . K. . Klimov . P. . Korotkov . A. . Kostritsa . F. . Landhuis . D. . Lucero . E. . McClean . J. . McEwen . M. . Mi . X. . Mohseni . M. . Mutus . J. Y. . Naaman . O. . Neeley . M. . Niu . M. . Petukhov . A. . Quintana . C. . Rubin . N. . Sank . D. . Smelyanskiy . V. . Vainsencher . A. . White . T. C. . Yao . Z. . Yeh . P. . Zalcman . A. . Neven . H. . Martinis . J. M. . Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms . Physical Review Letters . 125 . 12 . 2020-09-15 . 0031-9007 . 10.1103/PhysRevLett.125.120504 . 120504. 33016760 . 2001.08343 .
  31. Nguyen . L.B. . Kim . Y. . Hashim . A. . Goss . N.. Marinelli . B.. Bhandari . B.. Das . D.. Naik . R.K.. Kreikebaum . J.M.. Jordan . A.. Santiago . D.I.. Siddiqi . I. . Programmable Heisenberg interactions between Floquet qubits . Nature Physics . 16 January 2024 . 20 . 1 . 240–246 . 10.1038/s41567-023-02326-7 . 2024NatPh..20..240N . free . 2211.10383.
  32. Arrazola . Juan Miguel . Matteo . Olivia Di . Quesada . Nicolás . Jahangiri . Soran . Delgado . Alain . Killoran . Nathan . 2022-06-20 . Universal quantum circuits for quantum chemistry . Quantum . en-GB . 6 . 742 . 10.22331/q-2022-06-20-742. 2106.13839 . 2022Quant...6..742A . 235658488 . free .
  33. Arute . Frank . Arya . Kunal . Babbush . Ryan . Bacon . Dave . Bardin . Joseph C. . Barends . Rami . Biswas . Rupak . Boixo . Sergio . Brandao . Fernando G. S. L. . Buell . David A. . Burkett . Brian . Chen . Yu . Chen . Zijun . Chiaro . Ben . Collins . Roberto . 2019 . Quantum supremacy using a programmable superconducting processor . Nature . en . 574 . 7779 . 505–510 . 10.1038/s41586-019-1666-5 . 31645734 . 1910.11333 . 2019Natur.574..505A . 204836822 . 1476-4687. free .
  34. Gu . Xiu . Fernández-Pendás . Jorge . Vikstål . Pontus . Abad . Tahereh . Warren . Christopher . Bengtsson . Andreas . Tancredi . Giovanna . Shumeiko . Vitaly . Bylander . Jonas . Johansson . Göran . Frisk Kockum . Anton . 2021 . Fast Multiqubit Gates through Simultaneous Two-Qubit Gates . PRX Quantum . en . 2 . 4. 040348 . 10.1103/PRXQuantum.2.040348. 2108.11358 . 2691-3399. free .
  35. Maslov . Dmitri . 2016-02-10 . Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization . Physical Review A . en . 93 . 2 . 022311 . 10.1103/PhysRevA.93.022311 . 1508.03273 . 2016PhRvA..93b2311M . 5226873 . 2469-9926. free .
  36. Song . Guang . Klappenecker . Andreas . 2003-12-31 . The simplified Toffoli gate implementation by Margolus is optimal . quant-ph/0312225 . 2003quant.ph.12225S .
  37. Book: Thapliyal . Himanshu . Ranganathan . Nagarajan . 2009 IEEE Computer Society Annual Symposium on VLSI . Design of Efficient Reversible Binary Subtractors Based on a New Reversible Gate . 2009 . https://ieeexplore.ieee.org/document/5076412 . 229–234 . 10.1109/ISVLSI.2009.49. 978-1-4244-4408-3 . 16182781 .
  38. Warren . Christopher . Fernández-Pendás . Jorge . Ahmed . Shahnawaz . Abad . Tahereh . Bengtsson . Andreas . Biznárová . Janka . Debnath . Kamanasish . Gu . Xiu . Križan . Christian . Osman . Amr . Fadavi Roudsari . Anita . Delsing . Per . Johansson . Göran . Frisk Kockum . Anton . Tancredi . Giovanna . Bylander . Jonas . 2023 . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit . npj Quantum Information . en . 9 . 1. 44 . 10.1038/s41534-023-00711-x. 2207.02938 . 2056-6387. free .