List of quantum logic gates explained
In gate-based quantum computing, various sets of quantum logic gates are commonly used to express quantum operations. The following tables list several unitary quantum logic gates, together with their common name, how they are represented, and some of their properties. Controlled or conjugate transpose (adjoint) versions of some of these gates may not be listed.
Identity gate and global phase
Name | - qubits
| Operator symbol | Matrix | Circuit diagram | Properties | Refs |
---|
Identity,no-op | 1 (any) | , | \begin{bmatrix}1&0\ 0&1\end{bmatrix}
| or
|
| |
Global phase | 1 (any) | , or | ei\delta\begin{bmatrix}1&0\ 0&1\end{bmatrix}
| |
(period
)
| | |
The identity gate is the
identity operation I|\psi\rangle=|\psi\rangle
, most of the times this gate is not indicated in circuit diagrams, but it is useful when describing mathematical results.
It has been described as being a "wait cycle",[1] and a NOP.[2]
The global phase gate introduces a global phase
to the whole qubit quantum state. A quantum state is uniquely defined up to a phase. Because of the
Born rule, a
phase factor has no effect on a
measurement outcome:
for any
.
Because
ei\delta|\psi\rangle ⊗ |\phi\rangle=ei\delta(|\psi\rangle ⊗ |\phi\rangle),
when the global phase gate is applied to a single qubit in a
quantum register, the entire register's global phase is changed.
Also,
These gates can be extended to any number of qubits or qudits.
Clifford qubit gates
This table includes commonly used Clifford gates for qubits.[3] [4] [5]
!Names!# qubits!Operator symbol!Matrix!Circuit diagram!Some properties!RefsPauli X, NOT, bit flip | 1 | | \begin{bmatrix}0&1\ 1&0\end{bmatrix}
| or
|
| [6] |
Pauli Y | 1 | | \begin{bmatrix}0&-i\ i&0\end{bmatrix}
| | - Hermitian
- Pauli group
- Traceless
- Involutory
| |
Pauli Z, phase flip | 1 | | \begin{bmatrix}1&0\ 0&-1\end{bmatrix}
| | - Hermitian
- Pauli group
- Traceless
- Involutory
| |
Phase gate S, square root of Z | 1 | | \begin{bmatrix}1&0\ 0&i\end{bmatrix}
| | | |
Square root of X, square root of NOT | 1 | , , |
\begin{bmatrix}1+i&1-i\ 1-i&1+i\end{bmatrix}
| | | [7] |
Hadamard, Walsh-Hadamard | 1 | |
}\begin 1 & 1 \\ 1 & -1\end | | - Hermitian
- Traceless
- Involutory
| |
Controlled NOT, controlled-X, controlled-bit flip, reversible exclusive OR, Feynman | 2 | , | \begin{bmatrix}1&0&0&0\ 0&1&0&0\\0&0&0&1\ 0&0&1&0\end{bmatrix}
\begin{bmatrix}1&0&0&0\ 0&0&0&1\\0&0&1&0\ 0&1&0&0\end{bmatrix}
| |
Implementation:
| |
Anticontrolled-NOT, anticontrolled-X, zero control, control-on-0-NOT, reversible exclusive NOR | 2 | , , | \begin{bmatrix}0&1&0&0\ 1&0&0&0\\0&0&1&0\ 0&0&0&1\end{bmatrix}
| |
| |
Controlled-Z, controlled sign flip, controlled phase flip | 2 | , , , | \begin{bmatrix}1&0&0&0\ 0&1&0&0\\0&0&1&0\ 0&0&0&-1\end{bmatrix}
| | - Hermitian
- Involutory
- Symmetrical
Implementation:
| |
Double-controlled NOT | 2 | | \begin{bmatrix}1&0&0&0\\
0&0&1&0\\
0&0&0&1\\
0&1&0&0\end{bmatrix}
| |
| [8] |
Swap | 2 | | \begin{bmatrix}1&0&0&0\ 0&0&1&0\\0&1&0&0\ 0&0&0&1\end{bmatrix}
| or
| - Hermitian
- Involutory
- Symmetrical
| |
Imaginary swap | 2 |
| \begin{bmatrix}1&0&0&0\\0&0&i&0\\0&i&0&0\\0&0&0&1\end{bmatrix}
| or
| - Special unitary
- Symmetrical
| | |
Other Clifford gates, including higher dimensional ones are not included here but by definition can be generated using
and
.
Note that if a Clifford gate A is not in the Pauli group,
or controlled-
A are not in the Clifford gates.
The Clifford set is not a universal quantum gate set.
Non-Clifford qubit gates
Relative phase gates
Names | - qubits
| Operator symbol | Matrix | Circuit diagram | Properties | Refs |
---|
Phase shift | 1 | | \begin{bmatrix}1&0\ 0&ei\end{bmatrix}
| |
(period
) | [9] [10] |
Phase gate T, π/8 gate, fourth root of Z | 1 | or | \begin{bmatrix}1&0\ 0&ei\pi\end{bmatrix}
| | | |
Controlled phase | 2 | | \begin{bmatrix}1&0&0&0\ 0&1&0&0\ 0&0&1&0\ 0&0&0&ei\end{bmatrix}
| |
(period
)
Implementation:
| |
Controlled phase S | 2 |
| \begin{bmatrix}1&0&0&0\\
0&1&0&0\\
0&0&1&0\\
0&0&0&i
\end{bmatrix}
| |
| | |
The phase shift is a family of single-qubit gates that map the basis states
P(\varphi)|0\rangle=|0\rangle
and
P(\varphi)|1\rangle=ei\varphi|1\rangle
. The probability of measuring a
or
is unchanged after applying this gate, however it modifies the phase of the quantum state. This is equivalent to tracing a horizontal circle (a line of latitude), or a rotation along the z-axis on the
Bloch sphere by
radians. A common example is the
T gate where
(historically known as the
gate), the phase gate. Note that some Clifford gates are special cases of the phase shift gate:
P(0)=I, P(\pi)=Z;P(\pi/2)=S.
The argument to the phase shift gate is in U(1), and the gate performs a phase rotation in U(1) along the specified basis state (e.g.
rotates the phase about . Extending
to a rotation about a generic phase of both basis states of a 2-level quantum system (a
qubit) can be done with a series circuit:
P(\beta) ⋅ X ⋅ P(\alpha) ⋅ X=\begin{bmatrix}ei\alpha&0\ 0&ei\beta\end{bmatrix}
. When
this gate is the rotation operator
gate and if
it is a global phase.
The T gate's historic name of
gate comes from the identity
Rz(\pi/4)\operatorname{Ph}\left(
\right)=P(\pi/4)
, where
Rz(\pi/4)=\begin{bmatrix}e-i\pi/8&0\ 0&ei\pi/8\end{bmatrix}
.
Arbitrary single-qubit phase shift gates
are natively available for
transmon quantum processors through timing of microwave control pulses.
[12] It can be explained in terms of
change of frame.
[13] [14] As with any single qubit gate one can build a controlled version of the phase shift gate. With respect to the computational basis, the 2-qubit controlled phase shift gate is: shifts the phase with
only if it acts on the state
:
|a,b\rangle\mapsto\begin{cases}
ei\varphi|a,b\rangle&fora=b=1\\
|a,b\rangle&otherwise.
\end{cases}
The controlled-Z (or CZ) gate is the special case where
.
The controlled-S gate is the case of the controlled-
when
and is a commonly used gate.
Rotation operator gates
Names | - qubits
| Operator symbol | Exponential form | Matrix | Circuit diagram | Properties | Refs |
---|
Rotation about x-axis | 1 | |
| {\begin{bmatrix}\cos(\theta/2)&-i\sin(\theta/2)\\-i\sin(\theta/2)&\cos(\theta/2)\end{bmatrix}}
| | - Special unitary
- Continuous parameters:
(period
) | |
Rotation about y-axis | 1 | |
| \begin{bmatrix}\cos(\theta/2)&-\sin(\theta/2)\ \sin(\theta/2)&\cos(\theta/2)\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
) | |
Rotation about z-axis | 1 | |
| \begin{bmatrix}\exp(-i\theta/2)&0\\0&\exp(i\theta/2)
\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
) | | |
The rotation operator gates
and
are the analog
rotation matrices in three
Cartesian axes of
SO(3), along the x, y or z-axes of the
Bloch sphere projection.
As Pauli matrices are related to the generator of rotations, these rotation operators can be written as matrix exponentials with Pauli matrices in the argument. Any
unitary matrix in SU(2) can be written as a product (i.e. series circuit) of three rotation gates or less. Note that for two-level systems such as qubits and
spinors, these rotations have a period of . A rotation of (360 degrees) returns the same statevector with a different
phase.
[15] We also have
Rb(-\theta)=Rb(\theta)\dagger
and
for all
The rotation matrices are related to the Pauli matrices in the following way:
Rx(\pi)=-iX,Ry(\pi)=-iY,Rz(\pi)=-iZ.
It's possible to work out the adjoint action of rotations on the Pauli vector, namely rotation effectively by double the angle to apply Rodrigues' rotation formula:
Rn(-a)\vec{\sigma}R
⋅ \vec{\sigma}\right)}~\vec{\sigma}~
⋅ \vec{\sigma}\right)}=\vec{\sigma}\cos(a)+\hat{n} x \vec{\sigma}~\sin(a)+\hat{n}~\hat{n} ⋅ \vec{\sigma}~(1-\cos(a))~.
Taking the dot product of any unit vector with the above formula generates the expression of any single qubit gate when sandwiched within adjoint rotation gates. For example, it can be shown that
Ry(-\pi/2)XRy(\pi/2)=\hat{x} ⋅ (\hat{y} x \vec{\sigma})=Z
. Also, using the anticommuting relation we have
Ry(-\pi/2)XRy(\pi/2)=XRy(+\pi/2)Ry(\pi/2)=X(-iY)=Z
.
Rotation operators have interesting identities. For example,
and
Also, using the anticommuting relations we have
and
Global phase and phase shift can be transformed into each others with the Z-rotation operator:
Rz(\gamma)\operatorname{Ph}\left(
\right)=P(\gamma)
.
The
gate represents a rotation of about the
x axis at the Bloch sphere
\sqrt{X}=ei\pi/4Rx(\pi/2)
.
Similar rotation operator gates exist for SU(3) using Gell-Mann matrices. They are the rotation operators used with qutrits.
Two-qubit interaction gates
Names | - qubits
| Operator symbol | Exponential form | Matrix | Circuit diagram | Properties | Refs |
---|
XX interaction | 2 |
,
| \exp\left(-i
X ⊗ X\right)
| \begin{bmatrix}
\cos\left( | \phi | 2 |
\right)&0&0&-i\sin\left(
\right)\\
0&\cos\left(
\right)&-i\sin\left(
\right)&0\\
0&-i\sin\left(
\right)&\cos\left(
\right)&0\\
-i\sin\left(
\right)&0&0&\cos\left(
\right)\\
\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
)Implementation:
| |
YY interaction | 2 |
,
| \exp\left(-i
Y ⊗ Y\right)
| \begin{bmatrix}
\cos\left( | \phi | 2 |
\right)&0&0&i\sin\left(
\right)\\
0&\cos\left(
\right)&-i\sin\left(
\right)&0\\
0&-i\sin\left(
\right)&\cos\left(
\right)&0\\
i\sin\left(
\right)&0&0&\cos\left(
\right)\\
\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
)Implementation:
| |
ZZ interaction | 2 | ,
| {\displaystyle\exp\left(-i{
}Z\otimes Z\right)} | \begin{bmatrix}
e-i&0&0&0\\
0&ei&0&0\\
0&0&ei&0\\
0&0&0&e-i\\
\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
) | |
XY, XX plus YY | 2 | ,
| {\displaystyle\exp\left[-i
(X ⊗ X+Y ⊗ Y)\right]}
| \begin{bmatrix}1&0&0&0\\
0&\cos(\phi/2)&-i\sin(\phi/2)&0\\
0&-i\sin(\phi/2)&\cos(\phi/2)&0\\
0&0&0&1\\
\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
) | | |
The qubit-qubit Ising coupling or Heisenberg interaction gates
Rxx,
Ryy and
Rzz are 2-qubit gates that are implemented natively in some
trapped-ion quantum computers, using for example the
Mølmer–Sørensen gate procedure.
[16] [17] Note that these gates can be expressed in sinusoidal form also, for example
Rxx(\phi)=\exp\left(-i
X ⊗ X\right)=\cos\left(
\right)I ⊗ I-i\sin\left(
\right)X ⊗ X
.
The CNOT gate can be further decomposed as products of rotation operator gates and exactly a single two-qubit interaction gate, for example
CNOT
(-\pi/2)Rxx
(\pi/2).
The SWAP gate can be constructed from other gates, for example using the two-qubit interaction gates:
SWAP=
Rxx(\pi/2)Ryy(\pi/2)Rzz(\pi/2)
.
In superconducting circuits, the family of gates resulting from Heisenberg interactions is sometimes called the fSim gate set. They can be realized using flux-tunable qubits with flux-tunable coupling,[18] or using microwave drives in fixed-frequency qubits with fixed coupling.[19]
Non-Clifford swap gates
Names | - qubits
| Operator symbol | Matrix | Circuit diagram | Properties | Refs |
---|
Square root swap | 2 |
} | \begin{bmatrix}1&0&0&0\\
0&
} (1+i) & \frac (1-i) & 0 \\0 & \frac (1-i) & \frac (1+i) & 0 \\0 & 0 & 0 & 1 \\\end | | | |
Square root imaginary swap | 2 |
} | \begin{bmatrix}1&0&0&0\\0&
}&\frac&0\\0&\frac&\frac&0\\0&0&0&1\end | |
| [20] |
Swap (raised to a power) | 2 |
| \begin{bmatrix}1&0&0&0\\0&
&0\\0&0&0&1\end{bmatrix}
| |
(period
) | |
Fredkin,controlled swap | 3 |
,
| \begin{bmatrix}
1&0&0&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&0&1&0\\
0&0&0&0&0&1&0&0\\
0&0&0&0&0&0&0&1\\
\end{bmatrix}
| or
| - Hermitian
- Involutory
- Functionally complete reversible gate for Boolean algebra
| | |
The gate performs half-way of a two-qubit swap (see Clifford gates). It is universal such that any many-qubit gate can be constructed from only and single qubit gates. More than one application of the is required to produce a
Bell state from product states. The gate arises naturally in systems that exploit
exchange interaction.
[3] For systems with Ising like interactions, it is sometimes more natural to introduce the imaginary swap[21] or iSWAP.[22] [23] Note that
iSWAP=Rxx(-\pi/2)Ryy(-\pi/2)
and
}=R_(-\pi/4)R_(-\pi/4), or more generally
}=R_(-\pi/2n)R_(-\pi/2n) for all real
n except 0.
SWAPα arises naturally in spintronic quantum computers.
The Fredkin gate (also CSWAP or CS gate), named after Edward Fredkin, is a 3-bit gate that performs a controlled swap. It is universal for classical computation. It has the useful property that the numbers of 0s and 1s are conserved throughout, which in the billiard ball model means the same number of balls are output as input.
Other named gates
Names | - qubits
| Operator symbol | Matrix | Circuit diagram | Properties | Named after | Refs |
---|
General single qubit rotation | 1 |
| {\begin{bmatrix}\cos(\theta/2)&-eiλ\sin(\theta/2)\\ei\phi\sin(\theta/2)&ei(λ+\phi)\cos(\theta/2)\end{bmatrix}}
| | - Implements an arbitrary single-qubit rotation
- Continuous parameters:
(period
) | OpenQASM U gate | [24] |
| 2 | BARENCO(\alpha,\phi,\theta)
| \begin{bmatrix}1&0&0&0\\
0&1&0&0\\
0&0&ei\cos\theta&-iei\sin\theta\\
0&0&-iei\sin\theta&ei\cos\theta\end{bmatrix}
| | - Implements a controlled arbitrary qubit rotation
- Universal quantum gate
- Continuous parameters:
(period
) | Adriano Barenco | |
Berkeley B | 2 |
| \begin{bmatrix}\cos(\pi/8)&0&0&i\sin(\pi/8)\\
0&\cos(3\pi/8)&i\sin(3\pi/8)&0\\
0&i\sin(\pi/8)&\cos(\pi/8)&0\\
i\sin(\pi/8)&0&0&\cos(\pi/8)\\
\end{bmatrix}
| | - Special unitary
- Exponential form:
\exp\left[i
(2X ⊗ X+Y ⊗ Y)\right]
| University of California Berkeley[25] | |
Controlled-V,controlled square root NOT | 2 |
| \begin{bmatrix}1&0&0&0\\
0&1&0&0\\
0&0&ei&e-i\\
0&0&e-i&ei\end{bmatrix}
| | | | |
Core entangling, canonical decomposition | 2 |
,
| \begin{bmatrix}eic\cos(a-b)&0&0&ieic\sin(a-b)\\
0&e-ic\cos(a+b)&ie-ic\sin(a+b)&0\\
0&ie-ic\sin(a+b)&e-ic\cos(a+b)&0\\
ieic\sin(a-b)&0&0&eic\cos(a-b)\\
\end{bmatrix}
| | - Special unitary
- Universal quantum gate
- Exponential form
\exp\left[i(aX ⊗ X+bY ⊗ Y+cZ ⊗ Z)\right]
(period
) | | |
Dagwood Bumstead | 2 |
| \begin{bmatrix}1&0&0&0\\
0&\cos(3\pi/8)&-i\sin(3\pi/8)&0\\
0&-i\sin(3\pi/8)&\cos(3\pi/8)&0\\
0&0&0&1\\
\end{bmatrix}
| | - Special unitary
- Exponential form:
\exp\left[-i
(X ⊗ X+Y ⊗ Y)\right]
| Comicbook Dagwood Bumstead | [26] [27] |
Echoed cross resonance | 2 |
| | 1{\sqrt2}\begin{bmatrix} | 0 |
&0&1&i\\
0&0&i&1\\
1&-i&0&0\\
-i&1&0&0\\
\end{bmatrix}
| |
| | [28] |
Fermionic simulation | 2 |
,
| \begin{bmatrix}1&0&0&0\\
0&\cos(\theta)&-i\sin(\theta)&0\\
0&-i\sin(\theta)&\cos(\theta)&0\\
0&0&0&ei\phi\\
\end{bmatrix}
| | - Special unitary
- Continuous parameters:
(period
) | | [29] [30] [31] |
Givens | 2 |
,
| \begin{bmatrix}1&0&0&0\\
0&\cos(\theta)&-\sin(\theta)&0\\
0&\sin(\theta)&\cos(\theta)&0\\
0&0&0&1\\
\end{bmatrix}
| | - Special unitary
- Exponential form:
\exp\left[-i
(Y ⊗ X-X ⊗ Y)\right]
(period
) | Givens rotations | [32] |
Magic | 2 |
| | 1{\sqrt{2}}\begin{bmatrix} | 1 |
&i&0&0\\
0&0&i&1\\
0&0&i&-1\\
1&-i&0&0\\
\end{bmatrix}
| | | | |
Sycamore | 2 |
,
| \begin{bmatrix}1&0&0&0\\0&0&-i&0\\0&-i&0&0\\0&0&0&e-i\end{bmatrix}
| | | Google's Sycamore processor | [33] |
CZ-SWAP | 2 |
, | \begin{bmatrix}1&0&0&0\\0&-ei\gamma\sin2(\theta/2)+\cos
(1+ei\gamma)e-i\phi\sin(\theta)&0\\0&
(1+ei\gamma)ei\phi\sin(\theta)&-ei\gamma\cos2(\theta/2)+\sin2(\theta/2)&0\\0&0&0&-ei\gamma\end{bmatrix}
| |
- Submatrix of a controlled-CZS (CCZS)
| | [34] |
Deutsch | 3 |
,
| \begin{bmatrix}
1&0&0&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&1&0&0\\
0&0&0&0&0&0&i\cos\theta&\sin\theta\\
0&0&0&0&0&0&\sin\theta&i\cos\theta\\
\end{bmatrix}
| |
(period
)
| David Deutsch | |
Margolus, simplified Toffoli | 3 |
,
| \begin{bmatrix}
1&0&0&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&-1&0&0\\
0&0&0&0&0&0&0&1\\
0&0&0&0&0&0&1&0\\
\end{bmatrix}
| | - Hermitian
- Involutory
- Special unitary
- Functionally complete reversible gate for Boolean algebra
| Norman Margolus | [35] [36] |
Peres | 3 |
,
| \begin{bmatrix}
1&0&0&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&0&0&0&1\\
0&0&0&0&0&0&1&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&1&0&0\\
\end{bmatrix}
| | - Functionally complete reversible gate for Boolean algebra
| Asher Peres | [37] |
Toffoli, controlled-controlled NOT | 3 |
| \begin{bmatrix}
1&0&0&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&1&0&0\\
0&0&0&0&0&0&0&1\\
0&0&0&0&0&0&1&0\\
\end{bmatrix}
| | - Hermitian
- Involutory
- Functionally complete reversible gate for Boolean algebra
| Tommaso Toffoli | |
Fermionic-Fredkin,Controlled-fermionic SWAP | 3 |
,
,
| \begin{bmatrix}
1&0&0&0&0&0&0&0\\
0&1&0&0&0&0&0&0\\
0&0&1&0&0&0&0&0\\
0&0&0&1&0&0&0&0\\
0&0&0&0&1&0&0&0\\
0&0&0&0&0&0&1&0\\
0&0&0&0&0&1&0&0\\
0&0&0&0&0&0&0&-1\\
\end{bmatrix}
| | | | [38] | |
References
- Web site: IGate. qiskit.org. Qiskit online documentation.
- Web site: I operation. docs.microsoft.com. 28 July 2023 . Q# online documentation.
- Book: Williams . Explorations in Quantum Computing . . 2011 . 978-1-84628-887-6.
- Feynman . Richard P. . Quantum mechanical computers . Foundations of Physics . Springer Science and Business Media LLC . 16 . 6 . 1986 . 0015-9018 . 10.1007/bf01886518 . 507–531. 1986FoPh...16..507F . 122076550 .
- Barenco . Adriano . Bennett . Charles H. . Cleve . Richard . DiVincenzo . David P. . Margolus . Norman . Shor . Peter . Sleator . Tycho . Smolin . John A. . Weinfurter . Harald . Elementary gates for quantum computation . Physical Review A . American Physical Society (APS) . 52 . 5 . 1995-11-01 . 1050-2947 . 10.1103/physreva.52.3457 . 3457–3467. 9912645 . quant-ph/9503016. 1995PhRvA..52.3457B . 8764584 .
- Book: Nielsen, Michael A. . Quantum computation and quantum information . Cambridge University Press . Isaac L. Chuang . 2010 . 978-1-107-00217-3 . 10th anniversary . Cambridge . 665137861.
- Hung . W.N.N. . Xiaoyu Song . Guowu Yang . Jin Yang . Perkowski . M. . Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis . IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems . September 2006 . 25 . 9 . 1652–1663 . 0278-0070 . 10.1109/tcad.2005.858352 . 14123321 .
- Collins . Daniel . Linden . Noah . Popescu . Sandu . 2001-08-07 . Nonlocal content of quantum operations . Physical Review A . en . 64 . 3 . 032302 . 10.1103/PhysRevA.64.032302 . quant-ph/0005102 . 2001PhRvA..64c2302C . 29769034 . 1050-2947.
- Book: Pathak, Anirban . Elements of Quantum Computation and Quantum Communication . 2013-06-20 . Taylor & Francis . 978-1-4665-1792-9 . en.
- Book: Yanofsky . Noson S. . Quantum Computing for Computer Scientists . Mannucci . Mirco A. . 2008-08-11 . Cambridge University Press . 978-1-139-64390-0 . en.
- Fast Quantum Gates for Neutral Atoms . Phys. Rev. Lett. . 85 . 2000 . D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin. 10 . 2208–2211 . 10.1103/PhysRevLett.85.2208 . 10970499 . quant-ph/0004038 .
- Dibyendu Chatterjee, Arijit Roy. Progress of Theoretical and Experimental Physics. 7–8. A transmon-based quantum half-adder scheme. 2015. 2015. 9. 10.1093/ptep/ptv122. 2015PTEP.2015i3A02C. free.
- David C. . McKay . Christopher J. . Wood . Sarah . Sheldon . Jerry M. . Chow . Jay M. . Gambetta. Physical Review A. Efficient Z gates for quantum computing. 31 August 2017. 96. 2. 022330. 10.1093/ptep/ptv122. 1612.00858. 2015PTEP.2015i3A02C .
- Web site: qiskit.circuit.library.PhaseGate. IBM (qiskit documentation).
- Book: Griffiths . Introduction to Elementary Particles . . 2008 . 978-3-527-40601-2 . 2nd . 127–128 . David J. Griffiths.
- Web site: Monroe Conference . online.kitp.ucsb.edu.
- Web site: Demonstration of a small programmable quantum computer with atomic qubits . 2019-02-10.
- Foxen . B. . Neill . C. . Dunsworth . A. . Roushan . P. . Chiaro . B. . Megrant . A. . Kelly . J. . Chen . Zijun . Satzinger . K. . Barends . R. . Arute . F. . Arya . K. . Babbush . R. . Bacon . D. . Bardin . J. C. . Boixo . S. . Buell . D. . Burkett . B. . Chen . Yu . Collins . R. . Farhi . E. . Fowler . A. . Gidney . C. . Giustina . M. . Graff . R. . Harrigan . M. . Huang . T. . Isakov . S. V. . Jeffrey . E. . Jiang . Z. . Kafri . D. . Kechedzhi . K. . Klimov . P. . Korotkov . A. . Kostritsa . F. . Landhuis . D. . Lucero . E. . McClean . J. . McEwen . M. . Mi . X. . Mohseni . M. . Mutus . J. Y. . Naaman . O. . Neeley . M. . Niu . M. . Petukhov . A. . Quintana . C. . Rubin . N. . Sank . D. . Smelyanskiy . V. . Vainsencher . A. . White . T. C. . Yao . Z. . Yeh . P. . Zalcman . A. . Neven . H. . Martinis . J. M. . Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms . Physical Review Letters . 125 . 12 . 2020-09-15 . 0031-9007 . 10.1103/PhysRevLett.125.120504 . 120504. 33016760 . 2001.08343 .
- Nguyen . L.B. . Kim . Y. . Hashim . A. . Goss . N.. Marinelli . B.. Bhandari . B.. Das . D.. Naik . R.K.. Kreikebaum . J.M.. Jordan . A.. Santiago . D.I.. Siddiqi . I. . Programmable Heisenberg interactions between Floquet qubits . Nature Physics . 16 January 2024 . 20 . 1 . 240–246 . 10.1038/s41567-023-02326-7 . 2024NatPh..20..240N . free . 2211.10383.
- Book: Stancil . Daniel D. . Principles of Superconducting Quantum Computers . Byrd . Gregory T. . 2022-04-19 . John Wiley & Sons . 978-1-119-75074-1 . en.
- Rasmussen . S. E. . Zinner . N. T. . 2020-07-17 . Simple implementation of high fidelity controlled- i swap gates and quantum circuit exponentiation of non-Hermitian gates . Physical Review Research . en . 2 . 3 . 033097 . 2002.11728 . 2020PhRvR...2c3097R . 10.1103/PhysRevResearch.2.033097 . 2643-1564 . free.
- Schuch . Norbert . Siewert . Jens . 2003-03-10 . Natural two-qubit gate for quantum computation using the XY interaction . Physical Review A . en . 67 . 3 . 032301 . quant-ph/0209035 . 2003PhRvA..67c2301S . 10.1103/PhysRevA.67.032301 . 1050-2947 . 50823541.
- Dallaire-Demers . Pierre-Luc . Wilhelm . Frank K. . 2016-12-05 . Quantum gates and architecture for the quantum simulation of the Fermi-Hubbard model . Physical Review A . en . 94 . 6 . 062304 . 1606.00208 . 2016PhRvA..94f2304D . 10.1103/PhysRevA.94.062304 . 2469-9926 . 118408193.
- Cross . Andrew . Javadi-Abhari . Ali . Alexander . Thomas . De Beaudrap . Niel . Bishop . Lev S. . Heidel . Steven . Ryan . Colm A. . Sivarajah . Prasahnt . Smolin . John . Gambetta . Jay M. . Johnson . Blake R. . 2022 . OpenQASM 3: A Broader and Deeper Quantum Assembly Language . ACM Transactions on Quantum Computing . 3 . 3 . 1–50 . 10.1145/3505636 . 233476587 . 2643-6809. free . 2104.14722 .
- Zhang . Jun . Vala . Jiri . Sastry . Shankar . Whaley . K. Birgitta . 2004-07-07 . Minimum Construction of Two-Qubit Quantum Operations . Physical Review Letters . en . 93 . 2 . 020502 . 10.1103/PhysRevLett.93.020502 . 15323888 . quant-ph/0312193 . 2004PhRvL..93b0502Z . 9632700 . 0031-9007.
- Peterson . Eric C. . Crooks . Gavin E. . Smith . Robert S. . 2020-03-26 . Fixed-Depth Two-Qubit Circuits and the Monodromy Polytope . Quantum . en-GB . 4 . 247 . 10.22331/q-2020-03-26-247. 214690323 . free . 1904.10541 .
- AbuGhanem . M. . 2021-01-01 . Two-qubit Entangling Gate for Superconducting Quantum Computers . en . Rochester, NY. 10.2139/ssrn.4188257 . 4188257 . 252264545 .
- Córcoles . A. D. . Magesan . Easwar . Srinivasan . Srikanth J. . Cross . Andrew W. . Steffen . M. . Gambetta . Jay M. . Chow . Jerry M. . 2015-04-29 . Demonstration of a quantum error detection code using a square lattice of four superconducting qubits . Nature Communications . en . 6 . 1 . 6979 . 10.1038/ncomms7979 . 25923200 . 4421819 . 1410.6419 . 2015NatCo...6.6979C . 2041-1723.
- Kyriienko . Oleksandr . Elfving . Vincent E. . 2021-11-15 . Generalized quantum circuit differentiation rules . Physical Review A . en . 104 . 5 . 052417 . 10.1103/PhysRevA.104.052417 . 2108.01218 . 2021PhRvA.104e2417K . 10871/127818 . 236881494 . 2469-9926. free .
- Foxen . B. . Neill . C. . Dunsworth . A. . Roushan . P. . Chiaro . B. . Megrant . A. . Kelly . J. . Chen . Zijun . Satzinger . K. . Barends . R. . Arute . F. . Arya . K. . Babbush . R. . Bacon . D. . Bardin . J. C. . Boixo . S. . Buell . D. . Burkett . B. . Chen . Yu . Collins . R. . Farhi . E. . Fowler . A. . Gidney . C. . Giustina . M. . Graff . R. . Harrigan . M. . Huang . T. . Isakov . S. V. . Jeffrey . E. . Jiang . Z. . Kafri . D. . Kechedzhi . K. . Klimov . P. . Korotkov . A. . Kostritsa . F. . Landhuis . D. . Lucero . E. . McClean . J. . McEwen . M. . Mi . X. . Mohseni . M. . Mutus . J. Y. . Naaman . O. . Neeley . M. . Niu . M. . Petukhov . A. . Quintana . C. . Rubin . N. . Sank . D. . Smelyanskiy . V. . Vainsencher . A. . White . T. C. . Yao . Z. . Yeh . P. . Zalcman . A. . Neven . H. . Martinis . J. M. . Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum Algorithms . Physical Review Letters . 125 . 12 . 2020-09-15 . 0031-9007 . 10.1103/PhysRevLett.125.120504 . 120504. 33016760 . 2001.08343 .
- Nguyen . L.B. . Kim . Y. . Hashim . A. . Goss . N.. Marinelli . B.. Bhandari . B.. Das . D.. Naik . R.K.. Kreikebaum . J.M.. Jordan . A.. Santiago . D.I.. Siddiqi . I. . Programmable Heisenberg interactions between Floquet qubits . Nature Physics . 16 January 2024 . 20 . 1 . 240–246 . 10.1038/s41567-023-02326-7 . 2024NatPh..20..240N . free . 2211.10383.
- Arrazola . Juan Miguel . Matteo . Olivia Di . Quesada . Nicolás . Jahangiri . Soran . Delgado . Alain . Killoran . Nathan . 2022-06-20 . Universal quantum circuits for quantum chemistry . Quantum . en-GB . 6 . 742 . 10.22331/q-2022-06-20-742. 2106.13839 . 2022Quant...6..742A . 235658488 . free .
- Arute . Frank . Arya . Kunal . Babbush . Ryan . Bacon . Dave . Bardin . Joseph C. . Barends . Rami . Biswas . Rupak . Boixo . Sergio . Brandao . Fernando G. S. L. . Buell . David A. . Burkett . Brian . Chen . Yu . Chen . Zijun . Chiaro . Ben . Collins . Roberto . 2019 . Quantum supremacy using a programmable superconducting processor . Nature . en . 574 . 7779 . 505–510 . 10.1038/s41586-019-1666-5 . 31645734 . 1910.11333 . 2019Natur.574..505A . 204836822 . 1476-4687. free .
- Gu . Xiu . Fernández-Pendás . Jorge . Vikstål . Pontus . Abad . Tahereh . Warren . Christopher . Bengtsson . Andreas . Tancredi . Giovanna . Shumeiko . Vitaly . Bylander . Jonas . Johansson . Göran . Frisk Kockum . Anton . 2021 . Fast Multiqubit Gates through Simultaneous Two-Qubit Gates . PRX Quantum . en . 2 . 4. 040348 . 10.1103/PRXQuantum.2.040348. 2108.11358 . 2691-3399. free .
- Maslov . Dmitri . 2016-02-10 . Advantages of using relative-phase Toffoli gates with an application to multiple control Toffoli optimization . Physical Review A . en . 93 . 2 . 022311 . 10.1103/PhysRevA.93.022311 . 1508.03273 . 2016PhRvA..93b2311M . 5226873 . 2469-9926. free .
- Song . Guang . Klappenecker . Andreas . 2003-12-31 . The simplified Toffoli gate implementation by Margolus is optimal . quant-ph/0312225 . 2003quant.ph.12225S .
- Book: Thapliyal . Himanshu . Ranganathan . Nagarajan . 2009 IEEE Computer Society Annual Symposium on VLSI . Design of Efficient Reversible Binary Subtractors Based on a New Reversible Gate . 2009 . https://ieeexplore.ieee.org/document/5076412 . 229–234 . 10.1109/ISVLSI.2009.49. 978-1-4244-4408-3 . 16182781 .
- Warren . Christopher . Fernández-Pendás . Jorge . Ahmed . Shahnawaz . Abad . Tahereh . Bengtsson . Andreas . Biznárová . Janka . Debnath . Kamanasish . Gu . Xiu . Križan . Christian . Osman . Amr . Fadavi Roudsari . Anita . Delsing . Per . Johansson . Göran . Frisk Kockum . Anton . Tancredi . Giovanna . Bylander . Jonas . 2023 . Extensive characterization and implementation of a family of three-qubit gates at the coherence limit . npj Quantum Information . en . 9 . 1. 44 . 10.1038/s41534-023-00711-x. 2207.02938 . 2056-6387. free .