List of piezoelectric materials explained
This page lists properties of several commonly used piezoelectric materials.
Piezoelectric materials (PMs) can be broadly classified as either crystalline, ceramic, or polymeric.[1] The most commonly produced piezoelectric ceramics are lead zirconate titanate (PZT), barium titanate, and lead titanate. Gallium nitride and zinc oxide can also be regarded as a ceramic due to their relatively wide band gaps. Semiconducting PMs offer features such as compatibility with integrated circuits and semiconductor devices. Inorganic ceramic PMs offer advantages over single crystals, including ease of fabrication into a variety of shapes and sizes not constrained crystallographic directions. Organic polymer PMs, such as PVDF, have low Young's modulus compared to inorganic PMs. Piezoelectric polymers (PVDF, 240 mV-m/N) possess higher piezoelectric stress constants (g33), an important parameter in sensors, than ceramics (PZT, 11 mV-m/N), which show that they can be better sensors than ceramics. Moreover, piezoelectric polymeric sensors and actuators, due to their processing flexibility, can be readily manufactured into large areas, and cut into a variety of shapes. In addition polymers also exhibit high strength, high impact resistance, low dielectric constant, low elastic stiffness, and low density, thereby a high voltage sensitivity which is a desirable characteristic along with low acoustic and mechanical impedance useful for medical and underwater applications.
Among PMs, PZT ceramics are popular as they have a high sensitivity, a high g33 value. They are however brittle. Furthermore, they show low Curie temperature, leading to constraints in terms of applications in harsh environmental conditions. However, promising is the integration of ceramic disks into industrial appliances moulded from plastic. This resulted in the development of PZT-polymer composites, and the feasible integration of functional PM composites on large scale, by simple thermal welding or by conforming processes. Several approaches towards lead-free ceramic PM have been reported, such as piezoelectric single crystals (langasite), and ferroelectric ceramics with a perovskite structure and bismuth layer-structured ferroelectrics (BLSF), which have been extensively researched. Also, several ferroelectrics with perovskite-structure (BaTiO3 [BT], (Bi1/2Na1/2) TiO3 [BNT], (Bi1/2K1/2) TiO3 [BKT], KNbO3 [KN], (K, Na) NbO3 [KNN]) have been investigated for their piezoelectric properties.
Key piezoelectric properties
The following table lists the following properties for piezoelectric materials
- The piezoelectric coefficients (d33, d31, d15 etc.) measure the strain induced by an applied voltage (expressed as meters per volt). High dij coefficients indicate larger displacements which are needed for motoring transducer devices. The coefficient d33 measures deformation in the same direction (polarization axis) as the induced potential, whereas d31 describes the response when the force is applied perpendicular to the polarization axis. The d15 coefficient measures the response when the applied mechanical stress is due to shear deformation.
- Relative permittivity (εr) is the ratio between the absolute permittivity of the piezoelectric material, ε, and the vacuum permittivity, ε0.
- The electromechanical coupling factor k is an indicator of the effectiveness with which a piezoelectric material converts electrical energy into mechanical energy, or converts mechanical energy into electrical energy. The first subscript to k denotes the direction along which the electrodes are applied; the second denotes the direction along which the mechanical energy is applied, or developed.
- The mechanical quality factor Qm is an important high-power property of piezoelectric ceramics. It is the inverse of the mechanical loss tan ϕ.
Table
Single crystals |
---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittivity, εr | Electromechanical coupling factor, k | Quality factor |
---|
Hutson 1963[2] | AlN | | d15 = -4.07per | ε33 = 11.4 | | |
d31 = -2 | | | |
d33 = 5 | | | |
Cook et al. 1963[3] | BaTiO3 | | d15 = 392 | ε11 = 2920 | k15 = 0.57 | |
d31 = -34.5 | ε33 = 168 | k31 = 0.315 | |
d33 = 85.6 | | k33 = 0.56 | |
Warner et al. 1967[4] | LiNbO3 (Au-Au) | <001> | d15 = 68 | ε11 = 84 | | |
d22 = 21 | ε33 = 30 | | |
d31 = -1 | | k31 = 0.02 | |
d33 = 6 | | kt = 0.17 | |
Smith et al. 1971[5] | LiNbO3 | <001> | d15 = 69.2 | ε11 = 85.2 | | |
d22 = 20.8 | ε33 = 28.2 | | |
d31 = -0.85 | | | |
d33 = 6 | | | |
Yamada et al. 1967[6] | LiNbO3 (Au-Au) | <001> | d15 = 74 | ε11 = 84.6 | | |
d22 = 21 | ε33 = 28.6 | k22 = 0.32 | |
d31 = -0.87 | | k31 = 0.023 | |
d33 = 16 | | k33 = 0.47 | |
Yamada et al. 1969[7] | LiTaO3 | | d15 = 26 | ε11 = 53 | | |
d22 = 8.5 | ε33 = 44 | | |
d31 = -3 | | | |
d33 = 9.2 | | | |
Cao et al. 2002[8] | PMN-PT (33%) | | d15 = 146 | ε11 = 1660 | k15 = 0.32 | |
d31 = -1330 | ε33 = 8200 | k31 = 0.59 | |
d33 = 2820 | | k33 = 0.94 | |
| | kt = 0.64 | |
Badel et al. 2006[9] | PMN-25PT | <110> | d31 = -643 | ε33 = 2560 | k31 = -0.73 | 362 |
Kobiakov 1980[10] | ZnO | | d15 = -8.3 | ε11 = 8.67 | k15 = 0.199 | |
d31 = -5.12 | ε33 = 11.26 | k31 = 0.181 | |
d33 = 12.3 | | k33 = 0.466 | |
Zgonik et al. 1994[11] | ZnO (pure with lithium dopant) | | d15 = -13.3 | | kr = 8.2 | |
d31 = -4.67 | | | |
d33 = 12.0 | | | |
Zgonik et al. 1994[12] | BaTiO3 single crystals | [001] (single domain) | d33 = 90 | | | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] (single domain) | d33 = 224 | | | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] neutral (domain size of 100 ľm) | d33 = 235 | ε33 = 1984 | k33 = 54.4 | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] neutral (domain size of 60 ľm) | d33 = 241 | ε33 = 1959 | k33 = 55.9 | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] (domain size of 22 ľm) | d33 = 256 | ε33 = 2008 | k33 = 64.7 | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] neutral (domain size of 15 ľm) | d33 = 274 | ε33 = 2853 | k33 = 66.1 | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] neutral (domain size of 14 ľm) | d33 = 289 | ε33 = 1962 | k33 = 66.7 | |
Zgonik et al. 1994 | BaTiO3 single crystals | [111] neutral | d33 = 331 | ε33 = 2679 | k33 = 65.2 | |
[13] | LN crystal | | d31 = -4.5 d33 = -0.27
| | | |
Li et al. 2010[14] | PMNT31 | | d33 = 2000 | ε33 = 5100 | k31 = 80 | |
d31 = -750 | | | |
Zhang et al. 2002[15] | PMNT31-A | | 1400 | ε33 = 3600 | | |
Zhang et al. 2002 | PMNT31-B | | 1500 | ε33 = 4800 | | |
Zhang et al. 2002 | PZNT4.5 | | d33 = 2100 | ε33 = 4400 | k31 = 83 | |
d31 = -900 | | | |
Zhang et al. 2004[16] | PZNT8 | | d33 = 2500 | ε33 = 6000 | k31 = 89 | |
d31 = -1300 | | | |
Zhang et al. 2004 | PZNT12 | | d33 = 576 | ε33 = 870 | k31 = 52 | |
d31 = -217 | | | |
Yamashita et al. 1997[17] | PSNT33 | | | ε33 = 960 | / | |
Yasuda et al. 2001[18] | PINT28 | | 700 | ε33 = 1500 | / | |
Guo et al. 2003[19] | PINT34 | | 2000 | ε33 = 5000 | / | |
Hosono et al. 2003[20] | PIMNT | | 1950 | ε33 = 3630 | / | |
Zhang et al. 2002 | PYNT40 | | d33 = 1200 | ε33 = 2700 | k31 = 76 | |
d31 = -500 | | | |
Zhang et al. 2012 | PYNT45 | | d33 = 2000 | ε33 = 2000 | k31 = 78 | |
Zhang et al. 2003[21] | BSPT57 | | d33 = 1200 | ε33 = 3000 | k31 = 77 | |
d31 = -560 | | | |
Zhang et al. 2003[22] | BSPT58 | | d33 = 1400 | ε33 = 3200 | k31 = 80 | |
d31 = -670 | | | |
Zhang et al. 2004 | BSPT66 | | d33 = 440 | ε33 = 820 | k31 = 52 | |
d31 = -162 | | | |
Ye et al. 2008[23] | BSPT57 | | d33 = 1150 d31 = -520 | ε33 = 3000 | k31 = 0.52 k33 = 0.91 | |
Ye et al. 2008 | BSPT66 | | d33 = 440 | ε33 = 820 | k31 = 0.52 k33 = 0.88 | |
d31 = -162 | | | |
Ye et al. 2008 | PZNT4.5 | | d33 = 2000d31 = -970 | ε33 = 5200 | k31 = 0.50k33 = 0.91 | |
Ye et al. 2008 | PZNT8 | | d31 = -1455 | ε33 = 7700 | k31 = 0.60 k33 = 0.94 | |
Ye et al. 2008 | PZNT12 | | d33 = 576d31 = -217 | ε33 = 870 | k31 = 0.52k33 = 0.86 | |
Ye et al. 2008 | PMNT33 | | d33 = 2820 d31 = -1330 | ε33 = 8200 | k31 = 0.59 k33 = 0.94 | |
Matsubara et al. 2004[24] | KCN-modified KNN | | d33 = 100 d31 = -180 | ε33 = 220-330 | kp = 33-39 | 1200 |
Ryu et al. 2007[25] | KZT modifiedKNN | | d33 = 126 | ε33 = 590 | kp = 42 | 58 |
Matsubara et al. 2005[26] | KCT modified KNN | | d33 = 190 | ε33 = | kp = 42 | 1300 |
Wang et al. 2007[27] | Bi2O3 doped KNN | | d33 = 127 | ε33 = 1309 | kp = 28.3 | |
Jiang et al. 2009[28] | doped KNN-0.005BF | | d33 = 257 | ε33 = 361 | kp= 52 | 45 |
|
Ceramics |
---|
Reference | Material & heterostructure used for the characterization (electrodes/material, electrode/substrate) | Orientation | Piezoelectric coefficients, d (pC/N) | Relative permittivity, εr | Electromechanical coupling factor, k | Quality factor |
---|
Berlincourt et al. 1958[29] | BaTiO3 | | d15 = 270 | ε11 = 1440 | k15 = 0.57 | |
d31 = -79 | ε33 = 1680 | k31 = 0.49 | |
d33 = 191 | | k33 = 0.47 | |
Tang et al. 2011[30] | BFO | | d33 = 37 | | kt = 0.6 | |
Zhang et al. 1999[31] | PMN-PT | | d31 = -74 | ε33 = 1170 | k31 = -0.312 | 283 |
| PZT-5A | | d31 = -171 | ε33 = 1700 | k31 = 0.34 | |
d33 = 374 | | k33 = 0.7 | |
[32] | PZT-5H | | d15 = 741 | ε11 = 3130 | k15 = 0.68 | 65 |
d31 = -274 | ε33 = 3400 | k31 = 0.39 | |
d33 = 593 | | k33 = 0.75 | |
[33] | PZT-5K | | d33 = 870 | ε33 = 6200 | k33 = 0.75 | |
Tanaka et al. 2009[34] | PZN7%PT | | d33 = 2400 | εr = 6500 | k33 = 0.94 kt = 0.55 | |
Pang et al. 2010[35] | ANSZ | | d33 = 295 | 1.61 | 45.5 | 84 |
Park et al. 2006[36] | KNN-BZ | | d33 = 400 | 2 | 57.4 | 48 |
Cho et al. 2007[37] | KNN-BT | | d33 = 225 | 1.06 | 36.0 | |
Park et al. 2007[38] | KNN-ST | | d33 = 220 | 1.45 | 40.0 | 70 |
Zhao et al. 2007[39] | KNN-CT | | d33 = 241 | 1.32 | 41.0 | |
Zhang et al. 2006[40] | LNKN | | d33 = 314 | ~700 | 41.2 | |
Saito et al. 2004[41] | KNN-LS | | d33 = 270 | 1.38 | 50.0 | |
Saito et al. 2004 | LF4 | | d33 = 300 | 1.57 | | |
Tanaka et al. 2009 | Oriented LF4 | | d33 = 416 | 1.57 | 61.0 | |
Pang et al. 2010 | ANSZ | | d33 = 295 | 1.61 | 45.5 | 84 |
Park et al. 2006 | KNN-BZ | | d33 = 400 | 2 | 57.4 | 48 |
Cho et al. 2007[42] | KNN-BT | | d33 = 225 | 1.06 | 36.0 | |
Park et al. 2007 | KNN-ST | | d33 = 220 | 1.45 | 40.0 | 70 |
Maurya et al. 2013[43] | KNN-CT | | d33 = 241 | 1.32 | 41.0 | |
Maurya et al. 2013 | NBT-BT | (001) Textured samples | d33 = 322 | | ... | |
Gao et al. 2008[44] | NBT-BT-KBT | (001) Textured samples | d33 = 192 | | | |
Zou et al. 2016[45] | NBT-KBT | (001) Textured samples | d33 = 134 | | kp= 35 | |
Saito et al. 2004 | NBT-KBT | (001) Textured samples | d33 = 217 | | kp = 61 | |
Chang et al. 2009[46] | KNLNTS | (001) Textured samples | d33 = 416 | | kp = 64 | |
Chang et al. 2011[47] | KNNS | (001) Textured samples | d33 = 208 | | kp = 63 | |
Hussain et al. 2013[48] | KNLN | (001) Textured samples | d33 = 192 | | kp = 60 | |
Takao et al. 2006[49] | KNNT | (001) Textured samples | d33 = 390 | | kp = 54 | |
Li et al. 2012[50] | KNN 1 CuO | (001) Textured samples | d33 = 123 | | kp = 54 | |
Cho et al. 2012[51] | KNN-CuO | (001) Textured samples | d33 = 133 | | kp = 46 | |
Hao et al. 2012[52] | NKLNT | (001) Textured samples | d33 = 310 | | kp = 43 | |
Gupta et al. 2014[53] | KNLN | (001) Textured samples | d33 = 254 | | | |
Hao et al. 2012 | KNN | (001) Textured samples | d33 = 180 | | kp = 44 | |
Bai et al. 2016[54] | BCZT | (001) Textured samples | d33 = 470 | | kp = 47 | |
Ye et al. 2013[55] | BCZT | (001) Textured samples | d33 = 462 | | kp = 49 | |
Schultheiß et al. 2017 [56] | BCZT-T-H | (001) Textured samples | d33 = 580 | | | |
OMORI et al. 1990[57] | BCT | (001) Textured samples | d33 = 170 | | | |
Chan et al. 2008[58] | Pz34 (doped PbTiO3) | | d15 = 43.3 | ε33 = 237 | k31 = 4.6 | 700 |
d31 = -5.1 | ε33 = 208 | k33 = 39.6 | |
d33 = 46 | | k15 = 22.8 | |
| | kp = 7.4 | |
Lee et al. 2009[59] | BNKLBT | | d33 = 163 | εr = 766 | k31 = 0.188 | 142 |
| ε33 = 444.3 | kt = 0.524 | |
| | kp = 0.328 | |
Sasaki et al. 1999[60] | KNLNTS | | | εr = 1156 | k31 = 0.26 | 80 |
| ε33 = 746 | kt = 0.32 | |
| | kp = 0.43 | |
Takenaka et al. 1991[61] | (Bi0.5Na0.5)TiO3 (BNT)-based BNKT | | d31 = 46 | εr = 650 | kp = 0.27 | |
d33 = 150 | | k31 = 0.165 | |
Tanaka et al. 1960[62] | (Bi0.5Na0.5)TiO3 (BNT)-based BNBT | | d31 = 40 | εr = 580 | k31 = 0.19 | |
d33 = 12.5 | | k33 = 0.55 | |
Hutson 1960[63] | CdS | | d15 = -14.35 | | | |
d31 = -3.67 | | | |
d33 = 10.65 | | | |
Schofield et al. 1957[64] | CdS | | d31 = -1.53 | | | |
d33 = 2.56 | | | |
Egerton et al. 1959[65] | BaCaOTi | | d31 = -50 | | k15 = 0.19 | 400 |
d33 = 150 | | k31 = 0.49 | |
| | k33 = 0.325 | |
Ikeda et al. 1961[66] | Nb2O6Pb | | d31 = -11 | | kr = 0.07 | 11 |
d33 = 80 | | k31 = 0.045 | |
| | k33 = 0.042 | |
Ikeda et al. 1962[67] | C6H17N3O10S | | d23 = 84 | | k21 = 0.18 | |
d21 = 22.7 | | k22 = 0.18 | |
d25 = 22 | | k23 = 0.44 | |
Brown et al. 1962[68] | BaTiO3 (95%) BaZrO3 (5%) | | | | k15 = 0.15 | 200 |
d31 = -60 | | k31 = 0.40 | |
d33 = 150 | | k33 = 0.28 | |
Huston 1960 | BaNb2O6 (60%) Nb2O6Pb (40%) | | d31 = -25 | | kr = 0.16 | |
Baxter et al. 1960[69] | BaNb2O6 (50%) Nb2O6Pb (50%) | | d31= -36 | | kr = 0.16 | |
Pullin 1962[70] | BaTiO3 (97%) CaTiO3 (3%) | | d31 = -53 | ε33 = 1390 | k15 = 0.39 | |
d33 = 135 | | k31 = 0.17 | |
| | k33 = 0.43 | |
Berlincourt et al. 1960[71] | BaTiO3 (95%) CaTiO3 (5%) | | d15 = -257 | ε33 = 1355 | k15 = 0.495 | 500 |
d31 = -58 | | k31 = 0.19 | |
d33 = 150 | | k33 = 0.49 | |
| | kr = 0.3 | |
Berlincourt et al. 1960 | BaTiO3 (96%) PbTiO3 (4%) | | d31 = -38 | ε33 = 990 | k15 = 0.34 | |
d33 = 105 | | k31 = 0.14 | |
| | k33 = 0.39 | |
Jaffe et al. 1955[72] | PbHfO3 (50%) PbTiO3 (50%) | | d31 = -54 | | kr = 0.38 | |
Kell 1962[73] | Nb2O6Pb (80%) BaNb2O6 (20%) | | d31 = 25 | | kr = 0.20 | 15 |
Brown et al. 1962 | Nb2O6Pb (70%) BaNb2O6 (30%) | | d31 = -40 | ε33 = 900 | k31 = 0.13 | 350 |
d33 = 100 | | k33 = 0.3 | |
| | kr = 0.24 | |
Berlincourt et al. 1960[74] | PbTiO3 (52%) PbZrO3 (48%) | | d15 = 166 | | k15 = 0.40 | 1170 |
d31 = -43 | | k31 = 0.17 | |
d33 = 110 | | k33 = 0.43 | |
| | kr = 0.28 | |
Berlincourt et al. 1960[75] | PbTiO3 (50%) lead Zirconate (50%) | | d15 = 166 | | k15 = 0.504 | 950 |
d31 = -43 | | k31 = 0.23 | |
d33 = 110 | | k33 = 0.546 | |
| | kr = 0.397 | |
Egerton et al. 1959 | KNbO3 (50%) NaNbO3 (50%) | | d31 = -32 | | | 140 |
d33 = 80 | | k31 = 0.21 | |
| | k33 = 0.51 | |
Brown et al. 1962 | NaNbO3 (80%) Cd2Nb2O7 (20%) | | d31 = -80 | ε33 = 2000 | k31 = 0.17 | |
d33 = 200 | | k33 = 0.42 | |
| | kr = 0.30 | |
Schofield et al. 1957 | BaTiO3 (95%) CaTiO3 (5%) CoCO3 (0.25%) | | d31 = -60 | ε33 = 1605 | kr = 0.33 | |
Pullin 1962 | BaTiO3 (80%) PbTiO3 (12%) CaTiO3 (8%) | | d31 = -31 | | k31 = 0.15 | 1200 |
| d33 = 79 | | k33 = 0.41 | |
| | | kr = 0.24 | |
Defaÿ 2011[76] | AlN (Pt-Mo) | | d31 = -2.5 | | | |
Shibata et al. 2011[77] | KNN(Pt-Pt) | <001> | d31 = -96.3 | εr = 1100 | | |
d33 = 138.2 | | | |
Sessler 1981[78] | PVDF | | d31 = 17.9 | | k31 = 10.3 | |
d32 = 0.9 | | k33 = 12.6 | |
d33 = -27.1 | | | |
Ren et al. 2017[79] | PVDF | | d31 = 23 | εr = 106 | | |
d32 = 2 | | | |
d33 = -21 | | | |
Tsubouchi et al. 1981[80] | Epi AlN/Al2O3 | <001> | d33 = 5.53 | ε33 = 9.5 | kt = 6.5 | 2490 |
|
Nanomaterials |
---|
Reference | Material | Structure | Piezoelectric coefficients, d (pC/N) | Characterization method | Size (nm) |
---|
Ke et al. 2008[81] | NaNbO3 | nanowire | d33 = 0.85-4.26 pm/V | PFM | d = 100 |
Wang et al. 2008[82] | KNbO3 | nanowire | d33 = 0.9 pm/V | PFM | d = 100 |
Zhang et al. 2004[83] | PZT | nanowire | | PFM | d = 45 |
Zhao et al. 2004[84] | ZnO | nanobelt | d33 = 14.3-26.7 pm/V | PFM | w = 360 t = 65 |
Luo et al. 2003[85] | PZT | nanoshell | d33 = 90 pm/V | PFM | d = 700 t = 90 |
Yun et al. 2002[86] | BaTiO3 | nanowire | d33 = 0.5 pm/V | PFM | d = 120 |
Lin et al. 2008[87] | CdS | nanowire | | Bending with AFM tip | d = 150 |
Wang et al. 2007[88] | PZT | nanofiber | piezoelectric voltage constant~0.079 Vm/N | Bending using a tungsten probe | d = 10 |
Wang et al. 2007[89] | BaTiO3 | - | d33 = 45 pC/N | Direct tensile test | d ~ 280 |
Jeong et al. 2014[90] | Alkaline niobate (KNLN) | film | d33 = 310 pC/N | - | |
Park et al. 2010[91] | BaTiO3 | Thin film | d33 = 190 pC/N | | |
Stoppel et al. 2011[92] | AlN | Thin film | d33 =5 pC/N | AFM | |
Lee et al. 2017[93] | WSe2 | 2D nanosheet | d11 = 3.26 pm/V | | |
Zhu et al. 2014[94] | MoS2 | Free standing layer | e11 = 2900pc/m | AFM | |
Zhong et al. 2017[95] | PET/EVA/PET | film | d33 = 6300 pC/N | | |
|
Notes and References
- Liu. Huicong. Zhong. Junwen. Lee. Chengkuo. Lee. Seung-Wuk. Lin. Liwei. December 2018. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews. en. 5. 4. 041306. 10.1063/1.5074184. 1931-9401. 2018ApPRv...5d1306L. 117451095 .
- Hutson, Andrew R. "Piezoelectric devices utilizing aluminum nitride." U.S. Patent 3,090,876, issued May 21, 1963.
- Cook. W. R.. Berlincourt. D. A.. Scholz. F. J.. May 1963 . Thermal Expansion and Pyroelectricity in Lead Titanate Zirconate and Barium Titanate. Journal of Applied Physics. 34. 5. 1392–1398. 10.1063/1.1729587. 0021-8979. 1963JAP....34.1392C.
- Warner. A. W.. Onoe. M.. Coquin. G. A.. December 1967 . Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m). The Journal of the Acoustical Society of America. 42. 6. 1223–1231. 10.1121/1.1910709. 0001-4966. 1967ASAJ...42.1223W.
- Smith. R. T.. Welsh. F. S.. May 1971 . Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate. Journal of Applied Physics. 42. 6. 2219–2230. 10.1063/1.1660528. 0021-8979. 1971JAP....42.2219S.
- Yamada. Tomoaki. Niizeki. Nobukazu. Toyoda. Hiroo. February 1967 . Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals. Japanese Journal of Applied Physics. 6. 2. 151–155. 10.1143/jjap.6.151. 0021-4922. 1967JaJAP...6..151Y. 122641950 .
- Yamada. Tomoaki. Iwasaki. Hiroshi. Niizeki. Nobukazu. September 1969 . Piezoelectric and Elastic Properties of LiTaO3: Temperature Characteristics. Japanese Journal of Applied Physics. 8. 9. 1127–1132. 10.1143/jjap.8.1127. 0021-4922. 1969JaJAP...8.1127Y. 120188917 . free.
- Cao. Hu. Luo. Haosu. January 2002 . Elastic, Piezoelectric and Dielectric Properties of Pb(Mg 1/3 Nb 2/3)O 3 -38%PbTiO 3 Single Crystal. Ferroelectrics. 274. 1. 309–315. 10.1080/00150190213965. 2002Fer...274..309C . 122744640 . 0015-0193.
- Badel. A.. Benayad. A.. Lefeuvre. E.. Lebrun. L.. Richard. C.. Guyomar. D.. April 2006 . Single crystals and nonlinear process for outstanding vibration-powered electrical generators. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 53. 4. 673–684. 10.1109/TUFFC.2006.1621494. 16615571. 0885-3010.
- Kobiakov. I.B.. July 1980 . Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures. Solid State Communications. 35. 3. 305–310. 10.1016/0038-1098(80)90502-5. 0038-1098. 1980SSCom..35..305K.
- Zgonik. M.. Bernasconi. P.. Duelli. M.. Schlesser. R.. Günter. P.. Garrett. M. H.. Rytz. D.. Zhu. Y.. Wu. X.. September 1994 . Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Physical Review B. 50. 9. 5941–5949. 10.1103/physrevb.50.5941. 9976963. 0163-1829. 1994PhRvB..50.5941Z.
- Zgonik. M.. Bernasconi. P.. Duelli. M.. Schlesser. R.. Günter. P.. Garrett. M. H.. Rytz. D.. Zhu. Y.. Wu. X.. September 1994 . Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Physical Review B. 50. 9. 5941–5949. 10.1103/physrevb.50.5941. 9976963. 0163-1829. 1994PhRvB..50.5941Z.
- Web site: LiNbO3 Properties. unitedcrystals.com. 2020-01-26.
- Li. Fei. Zhang. Shujun. Xu. Zhuo. Wei. Xiaoyong. Luo. Jun. Shrout. Thomas R.. 2010-04-15. Investigation of Electromechanical Properties and Related Temperature Characteristics in Domain-Engineered Tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Crystals. Journal of the American Ceramic Society. 93. 9. 2731–2734. 10.1111/j.1551-2916.2010.03760.x. 0002-7820.
- Zhang. Shujun. Laurent. Lebrun. Rhee. Sorah. Randall. Clive A.. Shrout. Thomas R.. 2002-07-29. Shear-mode piezoelectric properties of Pb(Yb1/2Nb1/2)O3–PbTiO3 single crystals. Applied Physics Letters. 81. 5. 892–894. 10.1063/1.1497435. 0003-6951. 2002ApPhL..81..892Z.
- Zhang. Shujun. Randall. Clive A.. Shrout. Thomas R.. July 2004 . Dielectric, piezoelectric and elastic properties of tetragonal BiScO3-PbTiO3 single crystal with single domain. Solid State Communications. 131. 1. 41–45. 10.1016/j.ssc.2004.04.016. 0038-1098. 2004SSCom.131...41Z.
- Yamashita. Yohachi. Harada. Kouichi. 1997-09-30. Crystal Growth and Electrical Properties of Lead Scandium Niobate-Lead Titanate Binary Single Crystals. Japanese Journal of Applied Physics. 36. Part 1, No. 9B. 6039–6042. 10.1143/jjap.36.6039. 0021-4922. 1997JaJAP..36.6039Y. 250802280 .
- Yasuda. N. Ohwa. H. Kume. M. Hayashi. K. Hosono. Y. Yamashita. Y. July 2001 . Crystal growth and electrical properties of lead indium niobate–lead titanate binary single crystal. Journal of Crystal Growth. 229. 1–4. 299–304. 10.1016/s0022-0248(01)01161-7. 0022-0248. 2001JCrGr.229..299Y.
- Guo. Yiping. Luo. Haosu. He. Tianhou. Pan. Xiaoming. Yin. Zhiwen. April 2003 . Electric-field-induced strain and piezoelectric properties of a high Curie temperature Pb(In1/2Nb1/2)O3–PbTiO3 single crystal. Materials Research Bulletin. 38. 5. 857–864. 10.1016/s0025-5408(03)00043-6. 0025-5408.
- Hosono. Yasuharu. Yamashita. Yohachi. Sakamoto. Hideya. Ichinose. Noboru. 2003-09-30. Crystal Growth of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3and Pb(Sc1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3Piezoelectric Single Crystals Using the Solution Bridgman Method. Japanese Journal of Applied Physics. 42. Part 1, No. 9B. 6062–6067. 10.1143/jjap.42.6062. 0021-4922. 2003JaJAP..42.6062H. 120150824 . free.
- Zhang. Shujun. Randall. Clive A.. Shrout. Thomas R.. 2003-10-13. High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system. Applied Physics Letters. 83. 15. 3150–3152. 10.1063/1.1619207. 0003-6951. 2003ApPhL..83.3150Z.
- Zhang. Shujun. Randall. Clive A.. Shrout. Thomas R.. October 2003 . Electromechanical Properties in Rhombohedral BiScO3-PbTiO3Single Crystals as a Function of Temperature. Japanese Journal of Applied Physics. 42. Part 2, No. 10A. L1152–L1154. 10.1143/jjap.42.l1152. 0021-4922. 2003JaJAP..42L1152Z. 120306552 . free.
- Book: April 2008 . Ye. Zuo-Guang. Ye. Zuo-Guang. Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials. CRC Press . 10.1201/9781439832882. 978-1-4200-7085-9.
- Matsubara. Masato. Yamaguchi. Toshiaki. Kikuta. Koichi. Hirano. Shin-ichi. 2004-10-08. Sinterability and Piezoelectric Properties of (K,Na)NbO3Ceramics with Novel Sintering Aid. Japanese Journal of Applied Physics. 43. 10. 7159–7163. 10.1143/jjap.43.7159. 0021-4922. 2004JaJAP..43.7159M. 93156866 .
- Ryu. Jungho. Choi. Jong-jin. Hahn. Byung-dong. Park. Dong-soo. Yoon. Woon-ha. Kim. Kun-young. December 2007 . Sintering and piezoelectric properties of KNN ceramics doped with KZT. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 54. 12. 2510–2515. 10.1109/tuffc.2007.569. 18276547. 1947693 . 0885-3010.
- Matsubara. Masato. Yamaguchi. Toshiaki. Kikuta. Koichi. Hirano. Shin-ichi. 2005-01-11. Sintering and Piezoelectric Properties of Potassium Sodium Niobate Ceramics with Newly Developed Sintering Aid. Japanese Journal of Applied Physics. 44. 1A. 258–263. 10.1143/jjap.44.258. 0021-4922. 2005JaJAP..44..258M. 121788834 .
- Wang. Ying. Li. Yongxiang. Kalantar-zadeh. K.. Wang. Tianbao. Wang. Dong. Yin. Qingrui. 2007-09-13. Effect of Bi3+ ion on piezoelectric properties of K x Na1−x NbO3. Journal of Electroceramics. 21. 1–4. 629–632. 10.1007/s10832-007-9246-8. 136916970 . 1385-3449.
- Jiang. Minhong. Liu. Xinyu. Chen. Guohua. Zhou. Changrong. June 2009 . Dielectric and piezoelectric properties of LiSbO3 doped 0.995 K0.5Na0.5NbO3–0.005BiFeO3 piezoelectric ceramics. Materials Letters. 63. 15. 1262–1265. 10.1016/j.matlet.2009.02.066. 0167-577X.
- Berlincourt. Don. Jaffe. Hans. 1958-07-01. Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate. Physical Review. 111. 1. 143–148. 10.1103/physrev.111.143. 0031-899X. 1958PhRv..111..143B.
- Tang. Xianwu. Dai. Jianming. Zhu. Xuebin. Lin. Jianchao. Chang. Qing. Wu. Dajun. Song. Wenhai. Sun. Yuping. 2011-11-04. Thickness-Dependent Dielectric, Ferroelectric, and Magnetodielectric Properties of BiFeO3 Thin Films Derived by Chemical Solution Deposition. Journal of the American Ceramic Society. 95. 2. 538–544. 10.1111/j.1551-2916.2011.04920.x. 0002-7820.
- Zhang. Q.M.. Jianzhong Zhao. November 1999 . Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 46. 6. 1518–1526. 10.1109/58.808876. 18244349. 22968703 . 0885-3010.
- Web site: Your Partner in Smart Solutions. CTS. en-US. 2020-01-26.
- Morgan Electroceramics Co., Ltd (http://www.morganelectroceramics.com)
- Tanaka. Daisuke. Tsukada. Takeo. Furukawa. Masahito. Wada. Satoshi. Kuroiwa. Yoshihiro. 2009-09-24. Thermal Reliability of Alkaline Niobate-Based Lead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics. 48. 9. 09KD08. 10.1143/jjap.48.09kd08. 0021-4922. 2009JaJAP..48iKD08T. 120110825 .
- Pang. Xuming. Qiu. Jinhao. Zhu. Kongjun. 2010-10-07. Morphotropic Phase Boundary of Sodium-Potassium Niobate Lead-Free Piezoelectric Ceramics. Journal of the American Ceramic Society. 94. 3. 796–801. 10.1111/j.1551-2916.2010.04143.x. 0002-7820.
- Park. Hwi-Yeol. Ahn. Cheol-Woo. Song. Hyun-Cheol. Lee. Jong-Heun. Nahm. Sahn. Uchino. Kenji. Lee. Hyeung-Gyu. Lee. Hwack-Joo. 2006-08-07. Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3–0.05BaTiO3 ceramics. Applied Physics Letters. 89. 6. 062906. 10.1063/1.2335816. 0003-6951. 2006ApPhL..89f2906P.
- Cho. Kyung-Hoon. Park. Hwi-Yeol. Ahn. Cheol-Woo. Nahm. Sahn. Uchino. Kenji. Park. Seung-Ho. Lee. Hyeung-Gyu. Lee. Hwack-Joo. June 2007 . Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3?0.05SrTiO3Ceramics. Journal of the American Ceramic Society. 90. 6. 1946–1949. 10.1111/j.1551-2916.2007.01715.x. 0002-7820.
- Park. Hwi-Yeol. Cho. Kyung-Hoon. Paik. Dong-Soo. Nahm. Sahn. Lee. Hyeung-Gyu. Kim. Duk-Hee. 2007-12-15. Microstructure and piezoelectric properties of lead-free (1−x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics. Journal of Applied Physics. 102. 12. 124101–124101–5. 10.1063/1.2822334. 0021-8979. 2007JAP...102l4101P.
- Zhao. Pei. Zhang. Bo-Ping. Li. Jing-Feng. 2007-06-11. High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature. Applied Physics Letters. 90. 24. 242909. 10.1063/1.2748088. 0003-6951. 2007ApPhL..90x2909Z.
- Zhang. Shujun. Xia. Ru. Shrout. Thomas R.. Zang. Guozhong. Wang. Jinfeng. 2006-11-15. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. Journal of Applied Physics. 100. 10. 104108–104108–6. 10.1063/1.2382348. 0021-8979. 2006JAP...100j4108Z.
- Saito. Yasuyoshi. Takao. Hisaaki. Tani. Toshihiko. Nonoyama. Tatsuhiko. Takatori. Kazumasa. Homma. Takahiko. Nagaya. Toshiatsu. Nakamura. Masaya. 2004-10-31. Lead-free piezoceramics. Nature. 432. 7013. 84–87. 10.1038/nature03028. 15516921. 0028-0836. 2004Natur.432...84S. 4352954 .
- Cho. Kyung-Hoon. Park. Hwi-Yeol. Ahn. Cheol-Woo. Nahm. Sahn. Uchino. Kenji. Park. Seung-Ho. Lee. Hyeung-Gyu. Lee. Hwack-Joo. June 2007 . Microstructure and Piezoelectric Properties of 0.95(Na0.5K0.5)NbO3?0.05SrTiO3Ceramics. Journal of the American Ceramic Society. 90. 6. 1946–1949. 10.1111/j.1551-2916.2007.01715.x. 0002-7820.
- Maurya. Deepam. Zhou. Yuan. Yan. Yongke. Priya. Shashank. 2013. Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. Journal of Materials Chemistry C. 1. 11. 2102. 10.1039/c3tc00619k. 2050-7526.
- Gao. Feng. Liu. Xiang-Chun. Zhang. Chang-Song. Cheng. Li-Hong. Tian. Chang-Sheng. March 2008 . Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth. Ceramics International. 34. 2. 403–408. 10.1016/j.ceramint.2006.10.017. 0272-8842.
- Zou. Hua. Sui. Yongxing. Zhu. Xiaoqing. Liu. Bo. Xue. Jianzhong. Zhang. Jianhao. December 2016 . Texture development and enhanced electromechanical properties in <00l>-textured BNT-based materials. Materials Letters. 184. 139–142. 10.1016/j.matlet.2016.08.039. 0167-577X. free. 2016MatL..184..139Z .
- Chang. Yunfei. Poterala. Stephen F.. Yang. Zupei. Trolier-McKinstry. Susan. Messing. Gary L.. 2009-12-07. ⟨001⟩ textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Applied Physics Letters. 95. 23. 232905. 10.1063/1.3271682. 0003-6951. free.
- Chang. Yunfei. Poterala. Stephen. Yang. Zupei. Messing. Gary L.. 2011-03-24. Enhanced Electromechanical Properties and Temperature Stability of Textured (K0.5Na0.5)NbO3-Based Piezoelectric Ceramics. Journal of the American Ceramic Society. 94. 8. 2494–2498. 10.1111/j.1551-2916.2011.04393.x. 0002-7820.
- Hussain. Ali. Kim. Jin Soo. Song. Tae Kwon. Kim. Myong Ho. Kim. Won Jong. Kim. Sang Su. August 2013 . Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Current Applied Physics. 13. 6. 1055–1059. 10.1016/j.cap.2013.02.013. 1567-1739. 2013CAP....13.1055H.
- Takao. Hisaaki. Saito. Yasuyoshi. Aoki. Yoshifumi. Horibuchi. Kayo. August 2006 . Microstructural Evolution of Crystalline-Oriented (K0.5Na0.5)NbO3 Piezoelectric Ceramics with a Sintering Aid of CuO. Journal of the American Ceramic Society. 89. 6. 1951–1956. 10.1111/j.1551-2916.2006.01042.x. 0002-7820.
- Li. Yali. Hui. Chun. Wu. Mengjia. Li. Yongxiang. Wang. Youliang. January 2012 . Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceramics International. 38. S283–S286. 10.1016/j.ceramint.2011.04.102. 0272-8842.
- Cho. H. J.. Kim. M.-H.. Song. T. K.. Lee. J. S.. Jeon. J.-H.. 2012-04-13. Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method. Journal of Electroceramics. 30. 1–2. 72–76. 10.1007/s10832-012-9721-8. 138436905 . 1385-3449.
- Hao. Jigong. Ye. Chenggen. Shen. Bo. Zhai. Jiwei. 2012-04-25. Enhanced piezoelectric properties of 〈001〉 textured lead-free (KxNa1 − x)0.946Li0.054NbO3 ceramics with large strain. Physica Status Solidi A. 209. 7. 1343–1349. 10.1002/pssa.201127747. 121548719 . 1862-6300.
- Gupta. Shashaank. Belianinov. Alexei. Baris Okatan. Mahmut. Jesse. Stephen. Kalinin. Sergei V.. Priya. Shashank. 2014-04-28. Fundamental limitation to the magnitude of piezoelectric response of ⟨001⟩pc textured K0.5Na0.5NbO3 ceramic. Applied Physics Letters. 104. 17. 172902. 10.1063/1.4874648. 0003-6951. 2014ApPhL.104q2902G.
- Bai. Wangfeng. Chen. Daqin. Li. Peng. Shen. Bo. Zhai. Jiwei. Ji. Zhenguo. February 2016 . Enhanced electromechanical properties in <00l>-textured (Ba 0.85 Ca 0.15)(Zr 0.1 Ti 0.9)O 3 lead-free piezoceramics. Ceramics International. 42. 2. 3429–3436. 10.1016/j.ceramint.2015.10.139. 0272-8842.
- Ye. Shukai. Fuh. Jerry. Lu. Li. Chang. Ya-lin. Yang. Jer-Ren. 2013. Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Advances. 3. 43. 20693. 10.1039/c3ra43429j. 2013RSCAd...320693Y . 2046-2069.
- Schultheiß. Jan. Clemens. Oliver. Zhukov. Sergey. von Seggern. Heinz. Sakamoto. Wataru. Koruza. Jurij. 2017-03-03. Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85 Ca0.15 TiO3 piezoceramics. Journal of the American Ceramic Society. 100. 5. 2098–2107. 10.1111/jace.14749. 0002-7820.
- Omori. T.. Suzuki. H.. Sampei. T.. Yako. K.. Kanero. T.. 1990. High performance soft magnetic material "Ferroperm".. Bulletin of the Japan Institute of Metals. 29. 5. 364–366. 10.2320/materia1962.29.364. 0021-4426. free.
- Chan et al., 2008
- Lee et al., 2009
- Sasaki. Atsushi. Chiba. Tatsuya. Mamiya. Youichi. Otsuki. Etsuo. 1999-09-30. Dielectric and Piezoelectric Properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3Systems. Japanese Journal of Applied Physics. 38. Part 1, No. 9B. 5564–5567. 10.1143/jjap.38.5564. 0021-4922. 1999JaJAP..38.5564S. 118366580 .
- Takenaka. Tadashi. Maruyama. Kei-ichi. Sakata. Koichiro. 1991-09-30. (Bi1/2Na1/2)TiO3-BaTiO3System for Lead-Free Piezoelectric Ceramics. Japanese Journal of Applied Physics. 30. Part 1, No. 9B. 2236–2239. 10.1143/jjap.30.2236. 0021-4922. 1991JaJAP..30.2236T. 124093028 .
- Tanaka. Toshio. Tanaka. Shoji. 1960-04-15. Measurement of Piezoelectric Constants of a CdS Crystal. Journal of the Physical Society of Japan. 15. 4. 726. 10.1143/jpsj.15.726. 0031-9015. 1960JPSJ...15..726T.
- Hutson. A. R.. 1960-05-15. Piezoelectricity and Conductivity in ZnO and CdS. Physical Review Letters. 4. 10. 505–507. 10.1103/physrevlett.4.505. 0031-9007. 1960PhRvL...4..505H.
- Schofield. D.. Brown. R. F.. 1957-05-01. Canadian Journal of Physics. 35. 5. 594–607. 10.1139/p57-067. 0008-4204. An Investigation of Some Barium Titanate Compositions for Transducer Applications. 1957CaJPh..35..594S.
- EGERTON. L.. DILLON. DOLORES M.. September 1959 . Piezoelectric and Dielectric Properties of Ceramics in the System Potassium-Sodium Niobate. Journal of the American Ceramic Society. 42. 9. 438–442. 10.1111/j.1151-2916.1959.tb12971.x. 0002-7820.
- Ikeda. Takuro. Tanaka. Yoichi. Toyoda. Hiroo. 1961-12-15. Piezoelectric Properties of Triglycine Sulphate. Journal of the Physical Society of Japan. 16. 12. 2593–2594. 10.1143/jpsj.16.2593. 0031-9015. 1961JPSJ...16.2593I.
- Ikeda. Takuro. Tanaka. Yoichi. Toyoda. Hiroo. January 1962 . Piezoelectric Properties of Triglycine-Sulphate. Japanese Journal of Applied Physics. 1. 1. 13–21. 10.1143/jjap.1.13. 0021-4922. 1962JaJAP...1...13I. 250862299 .
- Brown. C.S.. Kell. R.C.. Taylor. R.. Thomas. L.A.. 1962. Piezo-electric materials. Proceedings of the IEE - Part B: Electronic and Communication Engineering. 109. 43. 99. 10.1049/pi-b-2.1962.0169. 0369-8890.
- BAXTER. P.. HELLICAR. N. J.. November 1960 . Electrical Properties of Lead-Barium Niobates and Associated Materials. Journal of the American Ceramic Society. 43. 11. 578–583. 10.1111/j.1151-2916.1960.tb13619.x. 0002-7820.
- Pullin. A.D.E.. August 1962 . Statistical mechanics Norman Davidson. McGraw-Hill Publishing Co. Ltd., London: McGraw-Hill Book Company, Inc., New York, 1962. pp. ix + 540. £5.12.6. Talanta. 9. 8. 747. 10.1016/0039-9140(62)80173-8. 0039-9140.
- Berlincourt. D.. Jaffe. B.. Jaffe. H.. Krueger. H.H.A.. February 1960 . Transducer Properties of Lead Titanate Zirconate Ceramics. IRE Transactions on Ultrasonic Engineering. 7. 1. 1–6. 10.1109/t-pgue.1960.29253. 51638579 . 0096-1019.
- Jaffe. B.. Roth. R.S.. Marzullo. S.. November 1955 . Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: Tin oxide and lead titanate-lead hafnate. Journal of Research of the National Bureau of Standards. 55. 5. 239. 10.6028/jres.055.028. 0091-0635. free.
- Kell. R.C.. 1962. Properties of niobate high-temperature piezo-electric ceramics. Proceedings of the IEE - Part B: Electronic and Communication Engineering. 109. 22S. 369–373. 10.1049/pi-b-2.1962.0065. 2054-0418.
- Berlincourt. D.. Cmolik. C.. Jaffe. H.. February 1960 . Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions. Proceedings of the IRE. 48. 2. 220–229. 10.1109/jrproc.1960.287467. 51673445 . 0096-8390.
- Berlincourt. D.. Cmolik. C.. Jaffe. H.. February 1960 . Piezoelectric Properties of Polycrystalline Lead Titanate Zirconate Compositions. Proceedings of the IRE. 48. 2. 220–229. 10.1109/jrproc.1960.287467. 51673445 . 0096-8390.
- Book: Defaÿ, Emmanuel. 2011-03-14. Integration of Ferroelectric and Piezoelectric Thin Films. 10.1002/9781118616635. 9781118616635.
- Shibata. Kenji. Suenaga. Kazufumi. Watanabe. Kazutoshi. Horikiri. Fumimasa. Nomoto. Akira. Mishima. Tomoyoshi. 2011-04-20. Improvement of Piezoelectric Properties of (K,Na)NbO3Films Deposited by Sputtering. Japanese Journal of Applied Physics. 50. 4. 041503. 10.1143/jjap.50.041503. 0021-4922. 2011JaJAP..50d1503S. 97530996 .
- Sessler. G. M.. December 1981 . Piezoelectricity in polyvinylidenefluoride. The Journal of the Acoustical Society of America. 70. 6. 1596–1608. 10.1121/1.387225. 0001-4966. 1981ASAJ...70.1596S.
- Ren. Baiyang. Cho. Hwanjeong. Lissenden. Cliff. 2017-03-01. A Guided Wave Sensor Enabling Simultaneous Wavenumber-Frequency Analysis for Both Lamb and Shear-Horizontal Waves. Sensors. en. 17. 3. 488. 10.3390/s17030488. 1424-8220. 5375774. 28257065 . 2017Senso..17..488R . free .
- Tsubouchi. K.. Sugai. K.. Mikoshiba. N.. 1981. AlN Material Constants Evaluation and SAW Properties on AlN/Al2O3and AlN/Si. 1981 Ultrasonics Symposium. 375–380. IEEE. 10.1109/ultsym.1981.197646.
- Ke. Tsung-Ying. Chen. Hsiang-An. Sheu. Hwo-Shuenn. Yeh. Jien-Wei. Lin. Heh-Nan. Lee. Chi-Young. Chiu. Hsin-Tien. 2008-05-27. Sodium Niobate Nanowire and Its Piezoelectricity. The Journal of Physical Chemistry C. 112. 24. 8827–8831. 10.1021/jp711598j. 1932-7447.
- Wang. J.. Stampfer. C.. Roman. C.. Ma. W. H.. Setter. N.. Nava Setter. Hierold. C.. December 2008 . Piezoresponse force microscopy on doubly clamped KNbO3 nanowires. Applied Physics Letters. 93. 22. 223101. 10.1063/1.3000385. 0003-6951. 2008ApPhL..93v3101W.
- Zhang. X. Y.. Zhao. X.. Lai. C. W.. Wang. J.. Tang. X. G.. Dai. J. Y.. November 2004 . Synthesis and piezoresponse of highly ordered Pb(Zr0.53Ti0.47)O3 nanowire arrays. Applied Physics Letters. 85. 18. 4190–4192. 10.1063/1.1814427. 0003-6951. 2004ApPhL..85.4190Z. 10397/4241. free.
- Zhao. Min-Hua. Wang. Zhong-Lin. Mao. Scott X.. April 2004 . Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope. Nano Letters. 4. 4. 587–590. 10.1021/nl035198a. 1530-6984. 2004NanoL...4..587Z.
- Luo. Yun. Szafraniak. Izabela. Zakharov. Nikolai D.. Nagarajan. Valanoor. Steinhart. Martin. Wehrspohn. Ralf B.. Wendorff. Joachim H.. Ramesh. Ramamoorthy. Alexe. Marin. 123413166. 2003-07-21. Nanoshell tubes of ferroelectric lead zirconate titanate and barium titanate. Applied Physics Letters. 83. 3. 440–442. 10.1063/1.1592013. 0003-6951. 2003ApPhL..83..440L.
- Yun. Wan Soo. Urban. Jeffrey J.. Gu. Qian. Park. Hongkun. May 2002 . Ferroelectric Properties of Individual Barium Titanate Nanowires Investigated by Scanned Probe Microscopy. Nano Letters. 2. 5. 447–450. 10.1021/nl015702g. 1530-6984. 2002NanoL...2..447Y.
- Lin. Yi-Feng. Song. Jinhui. Ding. Yong. Lu. Shih-Yuan. Wang. Zhong Lin. 123588080. 2008-01-14. Piezoelectric nanogenerator using CdS nanowires. Applied Physics Letters. 92. 2. 022105. 10.1063/1.2831901. 0003-6951. 2008ApPhL..92b2105L. 1853/27469. free.
- Wang. J.. Sandu. C. S.. Colla. E.. Wang. Y.. Ma. W.. Gysel. R.. Trodahl. H. J.. Setter. N.. Nava Setter. Kuball. M.. 123121473. 2007-03-26. Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires. Applied Physics Letters. 90. 13. 133107. 10.1063/1.2716842. 0003-6951. 2007ApPhL..90m3107W.
- Wang. Zhaoyu. Hu. Jie. Suryavanshi. Abhijit P.. Yum. Kyungsuk. Yu. Min-Feng. October 2007 . Voltage Generation from Individual BaTiO3Nanowires under Periodic Tensile Mechanical Load. Nano Letters. 7. 10. 2966–2969. 10.1021/nl070814e. 17894515. 1530-6984. 2007NanoL...7.2966W.
- Jeong. Chang Kyu. Park. Kwi-Il. Ryu. Jungho. Hwang. Geon-Tae. Lee. Keon Jae. May 2014 . Nanogenerators: Large-Area and Flexible Lead-Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler (Adv. Funct. Mater. 18/2014). Advanced Functional Materials. 24. 18. 2565. 10.1002/adfm.201470112. 1616-301X. free.
- Park. Kwi-Il. Xu. Sheng. Liu. Ying. Hwang. Geon-Tae. Kang. Suk-Joong L.. Wang. Zhong Lin. Lee. Keon Jae. 2010-12-08. Piezoelectric BaTiO3Thin Film Nanogenerator on Plastic Substrates. Nano Letters. 10. 12. 4939–4943. 10.1021/nl102959k. 21050010. 1530-6984. 2010NanoL..10.4939P.
- Stoppel. F.. Schröder. C.. Senger. F.. Wagner. B.. Benecke. W.. 2011. AlN-based piezoelectric micropower generator for low ambient vibration energy harvesting. Procedia Engineering. 25. 721–724. 10.1016/j.proeng.2011.12.178. 1877-7058. free.
- Lee. Ju-Hyuck. Park. Jae Young. Cho. Eun Bi. Kim. Tae Yun. Han. Sang A.. Kim. Tae-Ho. Liu. Yanan. Kim. Sung Kyun. Roh. Chang Jae. Yoon. Hong-Joon. Ryu. Hanjun. 2017-06-06. Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators. Advanced Materials. 29. 29. 1606667. 10.1002/adma.201606667. 28585262. 2017AdM....2906667L . 5516996 . 0935-9648.
- Zhu. Hanyu. Wang. Yuan. Xiao. Jun. Liu. Ming. Xiong. Shaomin. Wong. Zi Jing. Ye. Ziliang. Ye. Yu. Yin. Xiaobo. Zhang. Xiang. 2014-12-22. Observation of piezoelectricity in free-standing monolayer MoS2. Nature Nanotechnology. 10. 2. 151–155. 10.1038/nnano.2014.309. 25531085. 1748-3387.
- Zhong. Junwen. Zhong. Qize. Zang. Xining. Wu. Nan. Li. Wenbo. Chu. Yao. Lin. Liwei. July 2017 . Flexible PET/EVA-based piezoelectret generator for energy harvesting in harsh environments. Nano Energy. 37. 268–274. 10.1016/j.nanoen.2017.05.034. 2017NEne...37..268Z . 2211-2855. 10356/83115. free.