List of optics equations explained

This article summarizes equations used in optics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.

Definitions

Geometric optics (luminal rays)

See main article: Geometrical optics.

General fundamental quantities

Quantity (common name/s) (Common) symbol/s SI units Dimension
Object distancex, s, d, u, x1, s1, d1, u1m[L]
Image distancex', s', d', v, x2, s2, d2, v2m[L]
Object heighty, h, y1, h1m[L]
Image heighty', h', H, y2, h2, H2m[L]
Angle subtended by objectθ, θo, θ1raddimensionless
Angle subtended by imageθ', θi, θ2raddimensionless
Curvature radius of lens/mirrorr, Rm[L]
Focal lengthfm[L]
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Lens powerP

P=1/f

m−1 = D (dioptre)[L]−1
Lateral magnificationm

m=-x2/x1=y2/y1

dimensionlessdimensionless
Angular magnificationm

m=\theta2/\theta1

dimensionlessdimensionless

Physical optics (EM luminal waves)

See main article: Physical optics.

There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Poynting vectorS, N

N=

1
\mu0

E x B=E x H

W m-2[M][T]-3
Poynting flux, EM field power flowΦS, ΦN

\PhiN=\intSNdS

W [M][L]2[T]-3
RMS Electric field of LightErms

Erms=\sqrt{\langleE2\rangle}=E/\sqrt{2}

N C-1 = V m-1[M][L][T]-3[I]-1
Radiation momentum p, pEM, pr

pEM=U/c

J s m-1 [M][L][T]-1
Pr, pr, PEM

PEM=I/c=pEM/At

W m-2[M][T]-3

Radiometry

See main article: Radiometry.

For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.

Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
Radiant energyQ, E, Qe, EeJ[M][L]2[T]-2
He

He=dQ/\left(\hat{e

}_ \cdot \mathrm\mathbf \right) \,\!
J m-2[M][T]-3
Radiant energy densityωe

\omegae=dQ/dV

J m-3[M][L]-3
Radiant flux, radiant powerΦ, Φe

Q=\int\Phidt

W[M][L]2[T]-3
Radiant intensityI, Ie

\Phi=Id\Omega

W sr-1[M][L]2[T]-3
Radiance, intensity L, Le

\Phi=\iintL\left(\hat{e

}_ \cdot \mathrm\mathbf \right) \mathrm \Omega
W sr-1 m-2[M][T]-3
IrradianceE, I, Ee, Ie

\Phi=\intE\left(\hat{e

}_ \cdot \mathrm\mathbf \right)
W m-2[M][T]-3
Radiant exitance, radiant emittanceM, Me

\Phi=\intM\left(\hat{e

}_ \cdot \mathrm\mathbf \right)
W m-2[M][T]-3
RadiosityJ, Jν, Je, J

J=E+M

W m-2[M][T]-3
Spectral radiant flux, spectral radiant powerΦλ, Φν, Φ, Φ

Q=\iint\Phiλ{dλdt}

Q=\iint\Phi\nud\nudt

W m-1 (Φλ)
W Hz-1 = J (Φν)
[M][L]-3[T]-3 (Φλ)
[M][L]-2[T]-2 (Φν)
Spectral radiant intensityIλ, Iν, I, I

\Phi=\iintIλdλd\Omega

\Phi=\iintI\nud\nud\Omega

W sr-1 m-1 (Iλ)
W sr-1 Hz-1 (Iν)
[M][L]-3[T]-3 (Iλ)
[M][L]2[T]-2 (Iν)
Spectral radianceLλ, Lν, L, L

\Phi=\iiintLλdλ\left(\hat{e

}_ \cdot \mathrm\mathbf \right) \mathrm \Omega

\Phi=\iiintL\nud\nu\left(\hat{e

}_ \cdot \mathrm\mathbf \right) \mathrm \Omega \,\!
W sr−1 m−3 (Lλ)
W sr−1 m−2 Hz−1 (Lν)
[M][L]−1[T]−3 (Lλ)
[M][L]−2[T]−2 (Lν)
Spectral irradianceEλ, Eν, E, E

\Phi=\iintEλdλ\left(\hat{e

}_ \cdot \mathrm\mathbf \right)

\Phi=\iintE\nud\nu\left(\hat{e

}_ \cdot \mathrm\mathbf \right)
W m−3 (Eλ)
W m−2 Hz−1 (Eν)
[M][L]−1[T]−3 (Eλ)
[M][L]−2[T]−2 (Eν)

Equations

Luminal electromagnetic waves

Physical situationNomenclature Equations
Energy density in an EM wave

\langleu\rangle

= mean energy density
For a dielectric:

\langleu\rangle=

1
2

\left(\epsilonE2+\muB2\right)

Kinetic and potential momenta (non-standard terms in use)Potential momentum:

pp=qA

Kinetic momentum:

pk=mv\

Canonical momentum:

p=mv+qA

Irradiance, light intensity

    \langleS\rangle

    = time averaged poynting vector
    • I = irradiance
    • I0 = intensity of source
    • P0 = power of point source
    • Ω = solid angle
    • r = radial position from source

    I=\langleS\rangle=

    2
    E
    rms/c\mu

    0

    At a spherical surface:

    I=

    P0
    \Omega\left|r\right|2

    \

    Doppler effect for light (relativistic)
    λ=λ
    0\sqrt{c-v
    c+v
    }\,\!

    v=

    \Delta\lambdac/\lambda_0\,\!
    Cherenkov radiation, cone angle

      \cos\theta=

      c
      nv

      =

      1
      v\sqrt{\epsilon\mu
      } \,\!
      Electric and magnetic amplitudes
        • E = electric field
        • H = magnetic field strength
        For a dielectric

        \left

        \mathbf \right = \sqrt \left \mathbf \right \,\!
        EM wave componentsElectric

        E=E0\sin(kx-\omegat)

        Magnetic

        B=B0\sin(kx-\omegat)\

        Geometric optics

        Physical situationNomenclature Equations
        Critical angle (optics)
          • n1 = refractive index of initial medium
          • n2 = refractive index of final medium
          • θc = critical angle

          \sin\thetac=

          n2
          n1

          Thin lens equation
            • f = lens focal length
            • x1 = object length
            • x2 = image length
            • r1 = incident curvature radius
            • r2 = refracted curvature radius
            1+
            x1
            1
            x2

            =

            1
            f

            Lens focal length from refraction indices

            1
            f

            =\left(

            nlens
            {n

            med}-1\right)\left(

            1
            r1

            -

            1
            r2

            \right)\

            Image distance in a plane mirror

            x2=-x1

            Spherical mirrorr = curvature radius of mirrorSpherical mirror equation
            1
            x1

            +

            1
            x2

            =

            1
            f

            =

            2
            r

            Image distance in a spherical mirror

            n1
            x1

            +

            n2
            x2

            =

            \left(n2-n1\right)
            r

            \

            Subscripts 1 and 2 refer to initial and final optical media respectively.

            These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:

            n1
            n2

            =

            v2
            v1

            =

            λ2
            λ1

            =\sqrt{

            \epsilon1\mu1
            \epsilon2\mu2
            } \,\!

            where:

            Polarization

            Physical situationNomenclature Equations
            Angle of total polarisationθB = Reflective polarization angle, Brewster's angle

            \tan\thetaB=n2/n1

            intensity from polarized light, Malus's law
              • I0 = Initial intensity,
              • I = Transmitted intensity,
              • θ = Polarization angle between polarizer transmission axes and electric field vector

              I=

              2\theta
              I
              0\cos

              Diffraction and interference

              Property or effect NomenclatureEquation
              Thin film in air
                • n1 = refractive index of initial medium (before film interference)
                • n2 = refractive index of final medium (after film interference)
                  • Min:

                  Nλ/n2

                  • Max:

                  2L=(N+1/2)λ/n2\

                  The grating equation
                    • a = width of aperture, slit width
                    • α = incident angle to the normal of the grating plane
                    \delta
                    2\pi

                    λ=a\left(\sin\theta+\sin\alpha\right)

                    Rayleigh's criterion

                    \thetaR=1.22λ/d

                    Bragg's law (solid state diffraction)
                      • d = lattice spacing
                      • δ = phase difference between two waves
                      \delta
                      2\pi

                      λ=2d\sin\theta

                        • For constructive interference:

                        \delta/2\pi=n\

                        • For destructive interference:

                        \delta/2\pi=n/2

                        where

                        n\inN\

                        Single slit diffraction intensity
                          • I0 = source intensity
                          • Wave phase through apertures

                          \phi=

                          2\pia
                          λ

                          \sin\theta

                          I=I0\left[

                          \sin\left(\phi/2\right)
                          \left(\phi/2\right)

                          \right]2


                          N-slit diffraction (N ≥ 2)
                            • d = centre-to-centre separation of slits
                            • N = number of slits
                            • Phase between N waves emerging from each slit

                            \delta=

                            2\pid
                            λ

                            \sin\theta

                            I=I0\left[

                            \sin\left(N\delta/2\right)
                            \sin\left(\delta/2\right)

                            \right]2


                            N-slit diffraction (all N)

                            I=I0\left[

                            \sin\left(\phi/2\right)
                            \left(\phi/2\right)
                            \sin\left(N\delta/2\right)
                            \sin\left(\delta/2\right)

                            \right]2

                            Circular aperture intensity

                              I=I0\left(

                              2J1(ka\sin\theta)
                              ka\sin\theta

                              \right)2

                              Amplitude for a general planar apertureCartesian and spherical polar coordinates are used, xy plane contains aperture
                                • A, amplitude at position r
                                • r' = source point in the aperture
                                • Einc, magnitude of incident electric field at aperture
                                Near-field (Fresnel)

                                A\left(r\right)\propto\iintapertureEinc\left(r'\right)~

                                eik
                                4\pi\left|r-r'\right|

                                dx'dy'

                                Far-field (Fraunhofer)

                                A\left(r\right)\propto

                                eik
                                4\pir

                                \iintapertureEinc\left(r'\right)e-ikdx'dy'

                                Huygens–Fresnel–Kirchhoff principle
                                  • r0 = position from source to aperture, incident on it
                                  • r = position from aperture diffracted from it to a point
                                  • α0 = incident angle with respect to the normal, from source to aperture
                                  • α = diffracted angle, from aperture to a point
                                  • S = imaginary surface bounded by aperture

                                  \hat{n

                                  }\,\! = unit normal vector to the aperture

                                  r0\hat{n

                                  } = \left
                                  \mathbf_0 \right \cos \alpha_0 \,\!

                                  r\hat{n

                                  } = \left
                                  \mathbf \right \cos \alpha \,\!

                                  \left

                                  \mathbf \right \left \mathbf_0 \right \ll \lambda \,\!

                                  A(r)=

                                  -i

                                  \iintaperture

                                  ik\left(r+r0\right)
                                  e
                                  \left|r\right|\left|r0\right|

                                  \left[\cos\alpha0-\cos\alpha\right]dS

                                  Kirchhoff's diffraction formula

                                  A\left(r\right)=-

                                  1
                                  4\pi

                                  \iintaperture

                                  ikr0
                                  e
                                  \left|r0\right|

                                  \left[i\left|k\right|U0\left(r0\right)\cos{\alpha}+

                                  \partialA0\left(r0\right)
                                  \partialn

                                  \right]dS

                                  Astrophysics definitions

                                  In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.

                                  Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension
                                  Comoving transverse distanceDMpc (parsecs)[L]
                                  Luminosity distanceDL

                                  DL=\sqrt{

                                  L
                                  4\piF
                                  } \,
                                  pc (parsecs)[L]
                                  Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric)m

                                  mj=-

                                  5
                                  2

                                  log10\left

                                  \frac \right \,dimensionlessdimensionless
                                  Absolute magnitude(Bolometric)M

                                  M=m-5\left[\left(log10{DL}\right)-1\right]

                                  dimensionlessdimensionless
                                  Distance modulusμ

                                  \mu=m-M

                                  dimensionlessdimensionless
                                  Colour indices(No standard symbols)

                                  U-B=MU-MB


                                  B-V=MB-MV\

                                  \,dimensionlessdimensionless
                                  Bolometric correctionCbol (No standard symbol)

                                  \begin{align}Cbol&=mbol-V\\ &=Mbol-MV\end{align}

                                  dimensionlessdimensionless

                                  See also

                                  Sources

                                  Further reading