This article summarizes equations used in optics, including geometric optics, physical optics, radiometry, diffraction, and interferometry.
See main article: Geometrical optics.
Quantity (common name/s) | (Common) symbol/s | SI units | Dimension |
---|---|---|---|
Object distance | x, s, d, u, x1, s1, d1, u1 | m | [L] |
Image distance | x', s', d', v, x2, s2, d2, v2 | m | [L] |
Object height | y, h, y1, h1 | m | [L] |
Image height | y', h', H, y2, h2, H2 | m | [L] |
Angle subtended by object | θ, θo, θ1 | rad | dimensionless |
Angle subtended by image | θ', θi, θ2 | rad | dimensionless |
Curvature radius of lens/mirror | r, R | m | [L] |
Focal length | f | m | [L] |
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Lens power | P | P=1/f | m−1 = D (dioptre) | [L]−1 |
Lateral magnification | m | m=-x2/x1=y2/y1 | dimensionless | dimensionless |
Angular magnification | m | m=\theta2/\theta1 | dimensionless | dimensionless |
See main article: Physical optics.
There are different forms of the Poynting vector, the most common are in terms of the E and B or E and H fields.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | |||
---|---|---|---|---|---|---|---|
Poynting vector | S, N | N=
E x B=E x H | W m-2 | [M][T]-3 | |||
Poynting flux, EM field power flow | ΦS, ΦN | \PhiN=\intSN ⋅ dS | W | [M][L]2[T]-3 | |||
RMS Electric field of Light | Erms | Erms=\sqrt{\langleE2\rangle}=E/\sqrt{2} | N C-1 = V m-1 | [M][L][T]-3[I]-1 | |||
Radiation momentum | p, pEM, pr | pEM=U/c | J s m-1 | [M][L][T]-1 | |||
Pr, pr, PEM | PEM=I/c=pEM/At | W m-2 | [M][T]-3 | ||||
See main article: Radiometry.
For spectral quantities two definitions are in use to refer to the same quantity, in terms of frequency or wavelength.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension |
---|---|---|---|---|
Radiant energy | Q, E, Qe, Ee | J | [M][L]2[T]-2 | |
He | He=dQ/\left(\hat{e | J m-2 | [M][T]-3 | |
Radiant energy density | ωe | \omegae=dQ/dV | J m-3 | [M][L]-3 |
Radiant flux, radiant power | Φ, Φe | Q=\int\Phidt | W | [M][L]2[T]-3 |
Radiant intensity | I, Ie | \Phi=Id\Omega | W sr-1 | [M][L]2[T]-3 |
Radiance, intensity | L, Le | \Phi=\iintL\left(\hat{e | W sr-1 m-2 | [M][T]-3 |
Irradiance | E, I, Ee, Ie | \Phi=\intE\left(\hat{e | W m-2 | [M][T]-3 |
Radiant exitance, radiant emittance | M, Me | \Phi=\intM\left(\hat{e | W m-2 | [M][T]-3 |
Radiosity | J, Jν, Je, Jeν | J=E+M | W m-2 | [M][T]-3 |
Spectral radiant flux, spectral radiant power | Φλ, Φν, Φeλ, Φeν | Q=\iint\Phiλ{dλdt} Q=\iint\Phi\nud\nudt | W m-1 (Φλ) W Hz-1 = J (Φν) | [M][L]-3[T]-3 (Φλ) [M][L]-2[T]-2 (Φν) |
Spectral radiant intensity | Iλ, Iν, Ieλ, Ieν | \Phi=\iintIλdλd\Omega \Phi=\iintI\nud\nud\Omega | W sr-1 m-1 (Iλ) W sr-1 Hz-1 (Iν) | [M][L]-3[T]-3 (Iλ) [M][L]2[T]-2 (Iν) |
Spectral radiance | Lλ, Lν, Leλ, Leν | \Phi=\iiintLλdλ\left(\hat{e \Phi=\iiintL\nud\nu\left(\hat{e | W sr−1 m−3 (Lλ) W sr−1 m−2 Hz−1 (Lν) | [M][L]−1[T]−3 (Lλ) [M][L]−2[T]−2 (Lν) |
Spectral irradiance | Eλ, Eν, Eeλ, Eeν | \Phi=\iintEλdλ\left(\hat{e \Phi=\iintE\nud\nu\left(\hat{e | W m−3 (Eλ) W m−2 Hz−1 (Eν) | [M][L]−1[T]−3 (Eλ) [M][L]−2[T]−2 (Eν) |
Physical situation | Nomenclature | Equations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Energy density in an EM wave | \langleu\rangle | For a dielectric: \langleu\rangle=
\left(\epsilonE2+\muB2\right) | ||||||||||
Kinetic and potential momenta (non-standard terms in use) | Potential momentum: pp=qA Kinetic momentum: pk=mv\ | Canonical momentum: p=mv+qA | ||||||||||
Irradiance, light intensity | \langleS\rangle
| I=\langleS\rangle=
0 At a spherical surface: I=
\ | ||||||||||
Doppler effect for light (relativistic) |
v= | \Delta\lambda | c/\lambda_0\,\! | |||||||||
Cherenkov radiation, cone angle |
| \cos\theta=
=
| ||||||||||
Electric and magnetic amplitudes |
| For a dielectric \left | \mathbf \right | = \sqrt \left | \mathbf \right | \,\! | ||||||
EM wave components | Electric E=E0\sin(kx-\omegat) Magnetic B=B0\sin(kx-\omegat)\ | |||||||||||
Physical situation | Nomenclature | Equations | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Critical angle (optics) |
| \sin\thetac=
| |||||||||||||||||||||||
Thin lens equation |
|
=
Lens focal length from refraction indices
=\left(
med}-1\right)\left(
-
\right)\ | |||||||||||||||||||||||
Image distance in a plane mirror | x2=-x1 | ||||||||||||||||||||||||
Spherical mirror | r = curvature radius of mirror | Spherical mirror equation
+
=
=
Image distance in a spherical mirror
+
=
\ | |||||||||||||||||||||||
Subscripts 1 and 2 refer to initial and final optical media respectively.
These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:
n1 | |
n2 |
=
v2 | |
v1 |
=
λ2 | |
λ1 |
=\sqrt{
\epsilon1\mu1 | |
\epsilon2\mu2 |
where:
Physical situation | Nomenclature | Equations | ||||||
---|---|---|---|---|---|---|---|---|
Angle of total polarisation | θB = Reflective polarization angle, Brewster's angle | \tan\thetaB=n2/n1 | ||||||
intensity from polarized light, Malus's law |
| I=
| ||||||
Property or effect | Nomenclature | Equation | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thin film in air |
|
Nλ/n2
2L=(N+1/2)λ/n2\ | ||||||||||||||||||
The grating equation |
|
λ=a\left(\sin\theta+\sin\alpha\right) | ||||||||||||||||||
Rayleigh's criterion | \thetaR=1.22λ/d | |||||||||||||||||||
Bragg's law (solid state diffraction) |
|
λ=2d\sin\theta
\delta/2\pi=n\ |
\delta/2\pi=n/2 where n\inN\ | |||||||||||||||||
Single slit diffraction intensity |
\phi=
\sin\theta | I=I0\left[
\right]2 | ||||||||||||||||||
N-slit diffraction (N ≥ 2) |
\delta=
\sin\theta | I=I0\left[
\right]2 | ||||||||||||||||||
N-slit diffraction (all N) | I=I0\left[
\right]2 | |||||||||||||||||||
Circular aperture intensity |
| I=I0\left(
\right)2 | ||||||||||||||||||
Amplitude for a general planar aperture | Cartesian and spherical polar coordinates are used, xy plane contains aperture
| Near-field (Fresnel) A\left(r\right)\propto\iintapertureEinc\left(r'\right)~
dx'dy' Far-field (Fraunhofer) A\left(r\right)\propto
\iintapertureEinc\left(r'\right)e-ikdx'dy' | ||||||||||||||||||
Huygens–Fresnel–Kirchhoff principle |
\hat{n r0 ⋅ \hat{n | \mathbf_0 \right | \cos \alpha_0 \,\! r ⋅ \hat{n | \mathbf \right | \cos \alpha \,\! \left | \mathbf \right | \left | \mathbf_0 \right | \ll \lambda \,\! | A(r)=
\iintaperture
\left[\cos\alpha0-\cos\alpha\right]dS | ||||||||||
Kirchhoff's diffraction formula | A\left(r\right)=-
\iintaperture
\left[i\left|k\right|U0\left(r0\right)\cos{\alpha}+
\right]dS | |||||||||||||||||||
In astrophysics, L is used for luminosity (energy per unit time, equivalent to power) and F is used for energy flux (energy per unit time per unit area, equivalent to intensity in terms of area, not solid angle). They are not new quantities, simply different names.
Quantity (common name/s) | (Common) symbol/s | Defining equation | SI units | Dimension | |||||
---|---|---|---|---|---|---|---|---|---|
Comoving transverse distance | DM | pc (parsecs) | [L] | ||||||
Luminosity distance | DL | DL=\sqrt{
| pc (parsecs) | [L] | |||||
Apparent magnitude in band j (UV, visible and IR parts of EM spectrum) (Bolometric) | m | mj=-
log10\left | \frac \right | \, | dimensionless | dimensionless | |||
Absolute magnitude(Bolometric) | M | M=m-5\left[\left(log10{DL}\right)-1\right] | dimensionless | dimensionless | |||||
Distance modulus | μ | \mu=m-M | dimensionless | dimensionless | |||||
Colour indices | (No standard symbols) | U-B=MU-MB B-V=MB-MV\ | \, | dimensionless | dimensionless | ||||
Bolometric correction | Cbol (No standard symbol) | \begin{align}Cbol&=mbol-V\\ &=Mbol-MV\end{align} | dimensionless | dimensionless | |||||