List of periodic functions explained
This is a list of some well-known periodic functions. The constant function, where is independent of, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.
Smooth functions
All trigonometric functions listed have period
, unless otherwise stated. For the following trigonometric functions:
is the th up/down number,
is the th Bernoulli number
in Jacobi elliptic functions,
Name | Symbol | Formula | Fourier Series |
---|
|
|
|
|
|
|
|
|
|
|
|
|
| eix,\operatorname{cis}(x)
| |
|
|
|
|
[1] |
|
|
| | infty(\cos2nx-i\sin2nx) | i+2i\sum | | | n=1 |
|
|
|
| - |
|
| | (-1)n+12\left(22n-1-1\right)B2nx2n-1 | (2n)! |
| - |
|
|
| - |
|
|
| - |
|
|
|
|
| \operatorname{vercosin}(x)
|
|
|
| \operatorname{coversin}(x)
|
|
|
| \operatorname{covercosin}(x)
|
|
|
| \operatorname{haversin}(x)
|
|
|
| \operatorname{havercosin}(x)
|
|
|
| \operatorname{hacoversin}(x)
|
|
|
| \operatorname{hacovercosin}(x)
|
|
|
Jacobi elliptic function sn |
| \sin\operatorname{am}(x,m)
|
|
Jacobi elliptic function cn |
| \cos\operatorname{am}(x,m)
|
|
Jacobi elliptic function dn |
| \sqrt{1-m\operatorname{sn}2(x,m)}
|
|
Jacobi elliptic function zn |
| | | \int | | | 0\left[\operatorname{dn}(t,m) |
\right]dt
|
|
|
|
}\left[\frac1{(x-\lambda)^2}-\frac1{\lambda^2}\right] |
|
Clausen function |
|
| 2\sin\frac\right | dt |
| |
Non-smooth functions
The following functions have period
and take
as their argument. The symbol
is the
floor function of
and
is the
sign function.
K means Elliptic integral K(m)
Name | Formula | Limit | Fourier Series | Notes |
---|
|
\left(x-
\left\lfloor
\right\rfloor\right)(-1)\left\lfloor
\right\rfloor
| \lim | | \operatorname{zs}\left( | | m → 1- | |
|
| non-continuous first derivative |
| 2\left({
-\left\lfloor{
+{
\right\rfloor\right)
| -\lim | | \operatorname{zn}\left( | | m → 1- | |
|
| non-continuous |
|
| \lim | | \operatorname{sn}\left( | | m → 1- | |
|
| non-continuous |
| H\left(\cos
-\cos
\right)
where
is the Heaviside step function t is how long the pulse stays at 1 | |
+
\right)\cos\left(
\right)
| non-continuous |
Magnitude of sine wave with amplitude, A, and period, p/2 |
| \sin\fracp\right | | |
[2] | non-continuous |
| | p | -p\cos\left(f(-1)\left(\right)\right) |
| 2\pi |
given
and
isits real-valued inverse.
| |
+
| \operatorname{J | n(n)-\operatorname{J} |
n-1(n)}n\cos
where
is the Bessel Function of the first kind. | non-continuous first derivative |
|
| | 2K(m) | \operatorname{dn}\left( | p\pi |
|
| non-continuous |
Dirichlet function | {\displaystyle1Q(x)={\begin{cases}1&x\inQ\\0&x\notinQ\end{cases}}}
| \limm,n → infty\cos2m(n!x\pi)
| - | non-continuous | |
Vector-valued functions
Doubly periodic functions
Notes
- http://web.mit.edu/jorloff/www/18.03-esg/notes/fourier-tan.pdf
- Book: Papula, Lothar. Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler. Vieweg+Teubner Verlag . 2009 . 978-3834807571.