List of periodic functions explained

This is a list of some well-known periodic functions. The constant function, where is independent of, is periodic with any period, but lacks a fundamental period. A definition is given for some of the following functions, though each function may have many equivalent definitions.

Smooth functions

All trigonometric functions listed have period

2\pi

, unless otherwise stated. For the following trigonometric functions:

is the th up/down number,

is the th Bernoulli number

in Jacobi elliptic functions,

-\pi
K(1-m)
K(m)
q=e
Name Symbol Formula Fourier Series

\sin(x)

infty
\sum
n=0
(-1)nx2n+1
(2n+1)!

\sin(x)

\operatorname{cas}(x)

\sin(x)+\cos(x)

\sin(x)+\cos(x)

\cos(x)

infty
\sum
n=0
(-1)nx2n
(2n)!

\cos(x)

eix,\operatorname{cis}(x)

\cos(x)+i\sin(x)

\tan(x)

\sinx
\cosx
infty
=\sum
n=0
U2n+1x2n+1
(2n+1)!
infty
2\sum
n=1

(-1)n-1\sin(2nx)

[1]

\cot(x)

\cosx
\sinx
infty
=\sum
n=0
(-1)n22nB2nx2n-1
(2n)!
infty(\cos2nx-i\sin2nx)
i+2i\sum
n=1

\sec(x)

1{\cos
x}=\sum
infty
n=0
U2nx2n
(2n)!
-

\csc(x)

1{\sin
x}=\sum
infty
n=0
(-1)n+12\left(22n-1-1\right)B2nx2n-1
(2n)!
-

\operatorname{exsec}(x)

\sec(x)-1

-

\operatorname{excsc}(x)

\csc(x)-1

-

\operatorname{versin}(x)

1-\cos(x)

1-\cos(x)

\operatorname{vercosin}(x)

1+\cos(x)

1+\cos(x)

\operatorname{coversin}(x)

1-\sin(x)

1-\sin(x)

\operatorname{covercosin}(x)

1+\sin(x)

1+\sin(x)

\operatorname{haversin}(x)

1-\cos(x)
2
1-
2
12\cos(x)

\operatorname{havercosin}(x)

1+\cos(x)
2
1+
2
12\cos(x)

\operatorname{hacoversin}(x)

1-\sin(x)
2
1-
2
12\sin(x)

\operatorname{hacovercosin}(x)

1+\sin(x)
2
1+
2
12\sin(x)
Jacobi elliptic function sn

\operatorname{sn}(x,m)

\sin\operatorname{am}(x,m)

2\pi
K(m)\sqrtm
infty
\sum
n=0
qn+1/2
1-q2n+1

~\sin

(2n+1)\pix
2K(m)

Jacobi elliptic function cn

\operatorname{cn}(x,m)

\cos\operatorname{am}(x,m)

2\pi
K(m)\sqrtm
infty
\sum
n=0
qn+1/2~\cos
1+q2n+1
(2n+1)\pix
2K(m)
Jacobi elliptic function dn

\operatorname{dn}(x,m)

\sqrt{1-m\operatorname{sn}2(x,m)}

\pi
2K(m)

+

2\pi
K(m)
infty
\sum
n=1
qn~\cos
1+q2n
n\pix
K(m)

Jacobi elliptic function zn

\operatorname{zn}(x,m)

2-E(m)
K(m)
\int
0\left[\operatorname{dn}(t,m)

\right]dt

2\pi
K(m)
infty
\sum
n=1
qn~\sin
1-q2n
n\pix
K(m)

\weierp(x,Λ)

1{x
2}+\sum

λ\inΛ-\{0\

}\left[\frac1{(x-\lambda)^2}-\frac1{\lambda^2}\right]

Clausen function

\operatorname{Cl}2(x)

x
-\int
0ln\left
2\sin\frac\rightdt
infty\sinkx
k2
\sum
k=1

Non-smooth functions

The following functions have period

p

and take

x

as their argument. The symbol

\lfloorn\rfloor

is the floor function of

n

and

sgn

is the sign function.

K means Elliptic integral K(m)

Name Formula Limit Fourier Series Notes
4
p

\left(x-

p
2

\left\lfloor

2x+
p
1
2

\right\rfloor\right)(-1)\left\lfloor

2x+
p
1
2

\right\rfloor

\lim\operatorname{zs}\left(
m → 1-
4Kx
p-K,m\right)
8{\pi
2}\sum
infty
nodd
(-1)(n-1)/2\sin\left(
n2
2\pinx
p

\right)

non-continuous first derivative

2\left({

x
p}

-\left\lfloor{

1
2}

+{

x
p}

\right\rfloor\right)

-\lim\operatorname{zn}\left(
m → 1-
2Kx
p+K,m\right)
2\pi\sum
n=1
infty(-1)n-1
n\sin\left(2\pinx
p

\right)

non-continuous

sgn\left(\sin

2\pix
p

\right)

\lim\operatorname{sn}\left(
m → 1-
4Kx
p,m\right)
4\pi\sum
nodd
infty
1n\sin\left(2\pinx
p
\right)
non-continuous

H\left(\cos

2\pix
p

-\cos

\pit
p

\right)

where

H

is the Heaviside step function
t is how long the pulse stays at 1
t
p

+

infty
\sum
n=1
2\sin\left(
n\pi
\pint
p

\right)\cos\left(

2\pinx
p

\right)

non-continuous
Magnitude of sine wave
with amplitude, A, and period, p/2

A\left

\sin\fracp\right
4A
2\pi
infty
+\sum
n=1
4A
\pi
1\cos
4n2-1
2\pinx
p
[2]
non-continuous
p-p\cos\left(f(-1)\left(
2\pix
p
\right)\right)
2\pi

given

f(x)=x-\sin(x)

and

f(-1)(x)

is

its real-valued inverse.

pl(
\pi
3
4

+

infty
\sum
n=1
\operatorname{J
n(n)-\operatorname{J}

n-1(n)}n\cos

2\pinx
pr)

where

\operatorname{J}n(x)

is the Bessel Function of the first kind.
non-continuous first derivative
infty
\sum
n=-infty

\delta(x-np)

\lim
m → 1-
2K(m)\operatorname{dn}\left(
p\pi
2Kx
p,m\right)
1p\sum
n=-infty

infty

2n\piix
p
e
non-continuous
Dirichlet function

{\displaystyle1Q(x)={\begin{cases}1&x\inQ\\0&x\notinQ\end{cases}}}

\limm,n → infty\cos2m(n!x\pi)

-non-continuous

Vector-valued functions

Doubly periodic functions

Notes

  1. http://web.mit.edu/jorloff/www/18.03-esg/notes/fourier-tan.pdf
  2. Book: Papula, Lothar. Mathematische Formelsammlung: für Ingenieure und Naturwissenschaftler. Vieweg+Teubner Verlag . 2009 . 978-3834807571.