List of mathematic operators explained

In mathematics, an operator or transform is a function from one space of functions to another. Operators occur commonly in engineering, physics and mathematics. Many are integral operators and differential operators.

In the following L is an operator

L:l{F}\tol{G}

which takes a function

y\inl{F}

to another function

L[y]\inl{G}

. Here,

l{F}

and

l{G}

are some unspecified function spaces, such as Hardy space, Lp space, Sobolev space, or, more vaguely, the space of holomorphic functions.
ExpressionCurve
definition
VariablesDescription
Linear transformations

L[y]=y(n)

Derivative of nth order
t
L[y]=\int
a

ydt

Cartesian

y=y(x)


x=t

Integral, area

L[y]=y\circf

Composition operator
L[y]=y\circt+y\circ-t
2
Even component
L[y]=y\circt-y\circ-t
2
Odd component

L[y]=y\circ(t+1)-y\circt=\Deltay

Difference operator

L[y]=y\circ(t)-y\circ(t-1)=\nablay

Backward difference (Nabla operator)

L[y]=\sumy=\Delta-1y

Indefinite sum operator (inverse operator of difference)

L[y]=-(py')'+qy

Sturm–Liouville operator
Non-linear transformations

F[y]=y[-1]

Inverse function

F[y]=ty'[-1]-y\circy'[-1]

Legendre transformation

F[y]=f\circy

Left composition

F[y]=\prody

Indefinite product
F[y]=y'
y
Logarithmic derivative
F[y]={ty'
y
}
Elasticity

F[y]={y'''\overy'}-{3\over2}\left({y''\overy'}\right)2

Schwarzian derivative
t
F[y]=\int
a
y'\,dt Total variation
F[y]=1
t-a
t
\int
a

ydt

Arithmetic mean

F[y]=\exp\left(

1
t-a
t
\int
a

lnydt\right)

Geometric mean

F[y]=-

y
y'
Cartesian

y=y(x)


x=t

Subtangent

F[x,y]=-

yx'
y'
Parametric
Cartesian

x=x(t)


y=y(t)

F[r]=-

r2
r'
Polar

r=r(\phi)


\phi=t

F[r]=1
2
t
\int
a

r2dt

Polar

r=r(\phi)


\phi=t

Sector area

F[y]=

t
\int
a

\sqrt{1+y'2}dt

Cartesian

y=y(x)


x=t

Arc length

F[x,y]=

t
\int
a

\sqrt{x'2+y'2}dt

Parametric
Cartesian

x=x(t)


y=y(t)

F[r]=

t
\int
a

\sqrt{r2+r'2}dt

Polar

r=r(\phi)


\phi=t

F[y]=

t\sqrt[3]{y''}
\int
a

dt

Cartesian

y=y(x)


x=t

Affine arc length

F[x,y]=

t\sqrt[3]{x'y''-x''y'}
\int
a

dt

Parametric
Cartesian

x=x(t)


y=y(t)

t\sqrt[3]{z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')}dt
F[x,y,z]=\int
a
Parametric
Cartesian

x=x(t)


y=y(t)


z=z(t)

F[y]=y''
(1+y'2)3/2
Cartesian

y=y(x)


x=t

Curvature

F[x,y]=

x'y''-y'x''
(x'2+y'2)3/2
Parametric
Cartesian

x=x(t)


y=y(t)

F[r]=r2+2r'2-rr''
(r2+r'2)3/2
Polar

r=r(\phi)


\phi=t

F[x,y,z]=\sqrt{(z''y'-z'y'')2+(x''z'-z''x')2+(y''x'-x''y')2
}
Parametric
Cartesian

x=x(t)


y=y(t)


z=z(t)

F[y]=1
3
y''''-
(y'')5/3
5
9
y'''2
(y'')8/3
Cartesian

y=y(x)


x=t

Affine curvature

F[x,y]=

x''y'''-x'''y''-
(x'y''-x''y')5/3
1\left[
2
1
(x'y''-x''y')2/3

\right]''

Parametric
Cartesian

x=x(t)


y=y(t)

F[x,y,z]=z'''(x'y''-y'x'')+z''(x'''y'-x'y''')+z'(x''y'''-x'''y'')
(x'2+y'2+z'2)(x''2+y''2+z''2)
Parametric
Cartesian

x=x(t)


y=y(t)


z=z(t)

Torsion of curves
X[x,y]=y'
yx'-xy'


Y[x,y]=x'
xy'-yx'
Parametric
Cartesian

x=x(t)


y=y(t)

Dual curve
(tangent coordinates)
X[x,y]=x+ay'
\sqrt{x'2+y'2
}

Y[x,y]=y-ax'
\sqrt{x'2+y'2
}
Parametric
Cartesian

x=x(t)


y=y(t)

Parallel curve
X[x,y]=x+y'x'2+y'2
x''y'-y''x'


Y[x,y]=y+x'x'2+y'2
y''x'-x''y'
Parametric
Cartesian

x=x(t)


y=y(t)

Evolute

F[r]=t(r'\circr[-1])

Intrinsic

r=r(s)


s=t

X[x,y]=x-
t
x'\int\sqrt{x'2+y'2
a

dt}{\sqrt{x'2+y'2}}



Y[x,y]=y-
t
y'\int\sqrt{x'2+y'2
a

dt}{\sqrt{x'2+y'2}}

Parametric
Cartesian

x=x(t)


y=y(t)

Involute
X[x,y]=(xy'-yx')y'
x'2+y'2


Y[x,y]=(yx'-xy')x'
x'2+y'2
Parametric
Cartesian

x=x(t)


y=y(t)

Pedal curve with pedal point (0;0)
X[x,y]=(x'2-y'2)y'+2xyx'
xy'-yx'


Y[x,y]=(x'2-y'2)x'+2xyy'
xy'-yx'
Parametric
Cartesian

x=x(t)


y=y(t)

Negative pedal curve with pedal point (0;0)

X[y]=

t
\int
a

\cos

t
\left[\int
a
1
y

dt\right]dt



Y[y]=

t
\int
a

\sin

t
\left[\int
a
1
y

dt\right]dt

Intrinsic

y=r(s)


s=t

Intrinsic to
Cartesian
transformation
Metric functionals

F[y]=\

y\=\sqrtNorm

F[x,y]=\intExydt

Inner product

F[x,y]=\arccos\left[

\intExydt
\sqrt{\intEx2dt

\sqrt{\intEy2dt}}\right]

Fubini–Study metric
(inner angle)
Distribution functionals

F[x,y]=x*y=\intEx(s)y(t-s)ds

Convolution

F[y]=\intEylnydt

Differential entropy

F[y]=\intEytdt

Expected value

F[y]=\intE\left(t-\intEytdt\right)2ydt

Variance

See also