List of organisms by chromosome count explained

The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms. This number, along with the visual appearance of the chromosome, is known as the karyotype,[1] [2] [3] and can be found by looking at the chromosomes through a microscope. Attention is paid to their length, the position of the centromeres, banding pattern, any differences between the sex chromosomes, and any other physical characteristics.[4] The preparation and study of karyotypes is part of cytogenetics.

S. No.Organism
(B SULLAR)
Chromosome numberPictureKaryotypeNotesSource
1Jack jumper ant
(Myrmecia pilosula)
2 for females, males are haploid and thus have 1; smallest number possible. Other ant species have more chromosomes.[5]
2Spider mite
(Tetranychidae)
Spider mites (family Tetranychidae) are typically haplodiploid (males are haploid, while females are diploid)[6]
3Cricotopus sylvestris[7]
4Oikopleura dioica[8]
5Yellow fever mosquito
(Aedes aegypti)
The 2n=6 chromosome number is conserved in the entire family Culicidae, except in Chagasia bathana, which has 2n=8.[9]
6Indian muntjac
(Muntiacus muntjak)
2n = 6 for females and 7 for males. The lowest diploid chromosomal number in mammals.[10] [11]
7Hieracium
8Fruit fly
(Drosophila melanogaster)
6 autosomal and 2 allosomic (sex)[12]
9Macrostomum lignano[13]
10Marchantia polymorphaTypically haploid with dominant gametophyte stage. 8 autosomes and 1 allosome (sex chromosome). The sex-determination system used by this species and most other bryophytes is called UV. Spores can carry either the U chromosome, which results in female gametophytes, or the V chromosome, which results in males. The chromosome number n = 9 is the basic number in many species of Marchantiales. In some species of Marchantiales, plants with various ploidy levels (having 18 or 27 chromosomes) were reported, but this is rare in nature.[14]
11Thale cress
(Arabidopsis thaliana)
10
12Swamp wallaby
(Wallabia bicolor)
11 for male, 10 for female[15]
13Australian daisy
(Brachyscome dichromosomatica)
This species can have more B chromosomes than A chromosomes at times, but 2n=4.[16]
14Nematode
(Caenorhabditis elegans)
12 for hermaphrodites, 11 for males
15Spinach
(Spinacia oleracea)
12[17]
16Broad bean
(Vicia faba)
12[18]
17Yellow dung fly
(Scathophaga stercoraria)
1210 autosomal and 2 allosomic (sex) chromosomes. Males have XY sex chromosomes and females have XX sex chromosomes. The sex chromosomes are the largest chromosomes and constitute 30% of the total length of the diploid set in females and about 25% in males.[19]
18Slime mold
(Dictyostelium discoideum)
12[20]
19Cucumber
(Cucumis sativus)
14[21]
20Tasmanian devil
(Sarcophilus harrisii)
14
21Rye
(Secale cereale)
14
22Pea
(Pisum sativum)
14
23Barley
(Hordeum vulgare)
14[22]
24Aloe vera14The diploid chromosome number is 2n = 14 with four pair of long acrocentric chromosomes ranging from 14.4 μm to 17.9 μm and three pair of short sub metacentric chromosomes ranging from 4.6 μm to 5.4 μm.[23]
25Koala
(Phascolarctos cinereus)
16
26Kangaroo16 This includes several members of genus Macropus, but not the red kangaroo (M. rufus, 20)[24]
27Botryllus schlosseri[25]
28Schistosoma mansoni162n=16. 7 autosomal pairs and ZW sex-determination pair.[26]
29Welsh onion
(Allium fistulosum)
16[27]
30Garlic
(Allium sativum)
16
31Itch mite
(Sarcoptes scabiei)
According to the observation of embryonic cells of egg, chromosome number of the itch mite is either 17 or 18. While the cause for the disparate numbers is unknown, it may arise because of an XO sex determination mechanism, where males (2n=17) lack the sex chromosome and therefore have one less chromosome than the female (2n=18).[28]
32Radish
(Raphanus sativus)
18
33Carrot
(Daucus carota)
18The genus Daucus includes around 25 species. D. carota has nine chromosome pairs (2n = 2x = 18). D. capillifolius, D. sahariensis and D. syrticus are the other members of the genus with 2n = 18, whereas D. muricatus (2n = 20) and D. pusillus (2n = 22) have a slightly higher chromosome number. A few polyploid species as for example D. glochidiatus (2n = 4x = 44) and D. montanus (2n = 6x = 66) also exist.[29]
34Cabbage
(Brassica oleracea)
18Broccoli, cabbage, kale, kohlrabi, brussels sprouts, and cauliflower are all the same species and have the same chromosome number.
35Citrus
(Citrus)
18Chromosome number of the genus Citrus, which including lemons, oranges, grapefruit, pomelo and limes, is 2n = 18.[30] [31]
36Passion fruit
(Passiflora edulis)
18[32]
37Setaria viridis
(Setaria viridis)
18[33]
38Maize
(Zea mays)
20
39Cannabis
(Cannabis sativa)
20
40Western clawed frog
(Xenopus tropicalis)
20[34]
41Australian pitcher plant
(Cephalotus follicularis)
20[35]
42Cacao
(Theobroma cacao)
20[36]
43Eucalyptus
(Eucalyptus)
22Although some contradictory cases have been reported, the large homogeneity of the chromosome number 2n = 22 is now known for 135 (33.5%) distinct species among genus Eucalyptus.[37] [38]
44Virginia opossum
(Didelphis virginiana)
22 [39]
45Bean
(Phaseolus sp.)
22All species in the genus Phaseolus have the same chromosome number, including common bean (P. vulgaris), runner bean (P. coccineus), tepary bean (P. acutifolius) and lima bean (P. lunatus).
46Snail24
47Melon
(Cucumis melo)
24[40]
48Rice
(Oryza sativa)
24
49Silverleaf nightshade
(Solanum elaeagnifolium)
24[41]
50Sweet chestnut
(Castanea sativa)
24[42]
51Tomato
(Solanum lycopersicum)
24[43]
52European beech
(Fagus sylvatica)
24[44]
53Bittersweet nightshade
(Solanum dulcamara)
24[45] [46]
54Cork oak
(Quercus suber)
24[47]
55Edible frog
(Pelophylax kl. esculentus)
26Edible frog is the fertile hybrid of the pool frog and the marsh frog.[48] [49]
56Axolotl
(Ambystoma mexicanum)
28[50]
57Bed bug
(Cimex lectularius)
26 autosomes and varying number of the sex chromosomes from three (X1X2Y) to 21 (X1X2Y+18 extra Xs).[51]
58Pill millipede
(Arthrosphaera magna attems)
30 [52]
59Giraffe
(Giraffa camelopardalis)
30[53]
60American mink
(Neogale vison)
30
61Pistachio
(Pistacia vera)
30[54]
62Japanese oak silkmoth (Antheraea yamamai)31[55]
63Baker's yeast
(Saccharomyces cerevisiae)
32
64European honey bee
(Apis mellifera)
32/1632 for females (2n = 32), males are haploid and thus have 16 (1n =16).[56]
65American badger
(Taxidea taxus)
32
66Alfalfa
(Medicago sativa)
32Cultivated alfalfa is tetraploid, with 2n=4x=32. Wild relatives have 2n=16.[57]
67Red fox
(Vulpes vulpes)
34Plus 0-8 B chromosomes.[58]
68Sunflower
(Helianthus annuus)
34[59]
69Porcupine
(Erethizon dorsatum)
34
70Globe artichoke
(Cynara cardunculus var. scolymus)
34[60]
71Yellow mongoose
(Cynictis penicillata)
36
72Tibetan sand fox
(Vulpes ferrilata)
36
73Starfish
(Asteroidea)
36
74Red panda
(Ailurus fulgens)
36
75Meerkat
(Suricata suricatta)
36
76Cassava
(Manihot esculenta)
36[61]
77Long-nosed cusimanse
(Crossarchus obscurus)
36
78Earthworm
(Lumbricus terrestris)
36
79African clawed frog
(Xenopus laevis)
36
80Waterwheel plant
(Aldrovanda vesiculosa)
38
81Tiger
(Panthera tigris)
38
82Sea otter
(Enhydra lutris)
38
83Sable
(Martes zibellina)
38
84Raccoon
(Procyon lotor)
38[62]
85Pine marten
(Martes martes)
38
86Pig
(Sus)
38
87Oriental small-clawed otter
(Aonyx cinerea)
38
88Lion
(Panthera leo)
38
89Fisher
(Pekania pennanti)
38
90European mink
(Mustela lutreola)
38
91Coatimundi38
92Cat
(Felis catus)
38
93Beech marten
(Martes foina)
38
94Baja California rat snake
(Bogertophis rosaliae)
38[63]
95American marten
(Martes americana)
38
96Trans-Pecos ratsnake
(Bogertophis subocularis)
40[64]
97Mouse
(Mus musculus)
40[65]
98Mango
(Mangifera indica)
40
99Hyena
(Hyaenidae)
40
100Ferret
(Mustela furo)
40
101European polecat
(Mustela putorius)
40
102American beaver
(Castor canadensis)
40
103Peanut
(Arachis hypogaea)
40Cultivated peanut is an allotetraploid (2n = 4x = 40). Its closest relatives are the diploid (2n = 2x = 20).[66]
104Wolverine
(Gulo gulo)
42
105Wheat
(Triticum aestivum)
42This is a hexaploid with 2n=6x=42. Durum wheat is Triticum turgidum var. durum, and is a tetraploid with 2n=4x=28.
106Rhesus monkey
(Macaca mulatta)
42[67]
107Rat
(Rattus norvegicus)
42[68]
108Oats
(Avena sativa)
42This is a hexaploid with 2n=6x=42. Diploid and tetraploid cultivated species also exist.
109Giant panda
(Ailuropoda melanoleuca)
42
110Fossa
(Cryptoprocta ferox)
42
111European rabbit
(Oryctolagus cuniculus)
44
112Eurasian badger
(Meles meles)
44
113Moon jellyfish
(Aurelia aurita)
44[69]
114Dolphin
(Delphinidae)
44
115Arabian coffee
(Coffea arabica)
44 Out of the 103 species in the genus Coffea, arabica coffee is the only tetraploid species (2n = 4x = 44), the remaining species being diploid with 2n = 2x = 22.[70]
116Reeves's muntjac
(Muntiacus reevesi)
46
117Human
(Homo sapiens)
4644 autosomal. and 2 allosomic (sex)[71]
118Olive (Olea Europaea)46
119Nilgai
(Boselaphus tragocamelus)
46[72]
120Parhyale hawaiensis46[73]
121Water buffalo (swamp type)
(Bubalus bubalis)
48
122Tobacco
(Nicotiana tabacum)
48Cultivated species N. tabacum is an amphidiploid (2n=4x=48) evolved through the interspecific hybridization of the ancestors of N. sylvestris (2n=2x=24, maternal donor) and N. tomentosiformis (2n=2x=24, paternal donor) about 200,000 years ago.[74]
123Potato
(Solanum tuberosum)
48This is for common potato Solanum tuberosum (tetraploid, 2n = 4x = 48). Other cultivated potato species may be diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), or pentaploid (2n = 5x = 60). Wild relatives mostly have 2n=24.[75]
124Orangutan
(Pongo)
48
125Hare
(Lepus)
48 [76] [77]
126Gorilla
(Gorilla)
48
127Deer mouse
(Peromyscus maniculatus)
48
128Chimpanzee
(Pan troglodytes)
48[78]
129Eurasian beaver
(Castor fiber)
48
130Zebrafish
(Danio rerio)
50 [79]
131Woodland hedgehogs
Erinaceus
48 [80]
132African hedgehogs
Atelerix
48 [81]
133Water buffalo (Riverine type)
(Bubalus bubalis)
50
134Striped skunk
(Mephitis mephitis)
50
135Pineapple
(Ananas comosus)
50
136Kit fox
(Vulpes macrotis)
50
137Spectacled bear
(Tremarctos ornatus)
52
138Platypus
(Ornithorhynchus anatinus)
52 Ten sex chromosomes. Males have X1Y1X2Y2X3Y3X4Y4X5Y5, females have X1X1X2X2X3X3X4X4X5X5.[82] [83]
139Upland cotton
(Gossypium hirsutum)
52This is for the cultivated species G. hirsutum (allotetraploid, 2n=4x=52). This species accounts for 90% of the world cotton production. Among 50 species in the genus Gossypium, 45 are diploid (2n = 2x = 26) and 5 are allotetraploid (2n = 4x = 52).[84]
140Sheep
(Ovis aries)
54
141Hyrax
(Hyracoidea)
Hyraxes were considered to be the closest living relatives of elephants,[85] but sirenians have been found to be more closely related to elephants.[86]
142Raccoon dog
(Nyctereutes procyonoides procyonoides)
54This number is for common raccoon dog (N. p. procyonoides), 2n=54+B(0–4). On the other hand, Japanese raccoon dog (N. p. viverrinus) with 2n=38+B(0–8). Here, B represents B chromosome and its variation in the number between individuals.[87] [88]
143Capuchin monkey
(Cebinae)
54[89]
144Silkworm
(Bombyx mori)
56This is for the species mulberry silkworm, B. mori (2n=56). Probably more than 99% of the world's commercial silk today come from this species.[90] Other silk producing moths, called non-mulberry silkworms, have various chromosome numbers. (e.g. Samia cynthia with 2n=25–28,[91] Antheraea pernyi with 2n=98.[92])[93]
145Strawberry
(Fragaria × ananassa)
56This number is octoploid, main cultivated species Fragaria × ananassa (2n = 8x = 56). In genus Fragaria, basic chromosome number is seven (x = 7) and multiple levels of ploidy, ranging from diploid (2n = 2x = 14) to decaploid (F. iturupensis, 2n = 10x = 70), are known.[94]
146Gaur
(Bos gaurus)
56
147Elephant
(Elephantidae)
56
148Woolly mammoth
(Mammuthus primigenius)
58 extinct; tissue from a frozen carcass
149Domestic yak
(Bos grunniens)
60
150Goat
(Capra hircus)
60
151Cattle
(Bos taurus)
60
152American bison
(Bison bison)
60
153Sable antelope
(Hippotragus niger)
60[95]
154Bengal fox
(Vulpes bengalensis)
60
155Gypsy moth
(Lymantria dispar dispar)
62
156Donkey
(Equus asinus)
62
157Scarlet macaw
(Ara macao)
62–64[96]
158Mule63 semi-infertile (odd number of chromosomes – between donkey (62) and horse (64) makes meiosis much more difficult)
159Guinea pig
(Cavia porcellus)
64
160Spotted skunk
(Spilogale x)
64
161Horse
(Equus caballus)
64
162Fennec fox
(Vulpes zerda)
64
163Echidna
(Tachyglossidae)
63/64 63 (X1Y1X2Y2X3Y3X4Y4X5, male) and 64 (X1X1X2X2X3X3X4X4X5X5, female)[97]
164Chinchilla
(Chinchilla lanigera)
64[98]
165Nine-banded armadillo
(Dasypus novemcinctus)
64 [99]
166Gray fox
(Urocyon cinereoargenteus)
66
167Red deer
(Cervus elaphus)
68
168Elk (wapiti)
(Cervus canadensis)
68
169Roadside hawk
(Rupornis magnirostris)
68 [100]
170White-tailed deer
(Odocoileus virginianus)
70
171Black nightshade
(Solanum nigrum)
72[101]
172Tropical blue bamboo
(Bambusa chungii)
64–72[102]
173Bat-eared fox
(Otocyon megalotis)
72
174Sun bear
(Helarctos malayanus)
74
175Sloth bear
(Melursus ursinus)
74
176Polar bear
(Ursus maritimus)
74
177Brown bear
(Ursus arctos)
74
178Asian black bear
(Ursus thibetanus)
74
179American black bear
(Ursus americanus)
74
180Bush dog
(Speothos venaticus)
74
181Maned wolf
(Chrysocyon brachyurus)
76
182Gray wolf
(Canis lupus)
78
183Golden jackal
(Canis aureus)
78
184Dove
(Columbidae)
78Based on African collared dove[103]
185Dog
(Canis familiaris)
78Normal dog karyotype is composed of 38 pairs of acrocentric autosomes and two metacentric sex chromosomes.[104] [105] [106]
186Dingo
(Canis familiaris)
78
187Dhole
(Cuon alpinus)
78
188Coyote
(Canis latrans)
78
189Chicken
(Gallus gallus domesticus)
78
190African wild dog
(Lycaon pictus)
78[107]
191Tropical pitcher plant
(Nepenthes rafflesiana)
78
192Turkey
(Meleagris)
80[108]
193Sugarcane
(Saccharum officinarum)
80This is for S. officinarum (octoploid, 2n = 8× = 80). About 70% of the world's sugar comes from this species.[109] Other species in the genus Saccharum, collectively known as sugarcane, have chromosome numbers in the range 2n=40–128.[110] [111]
194Pigeon
(Columbidae)
80[112]
195Azure-winged magpie
(Cyanopica cyanus)
80[113]
196Great white shark
(Carcharodon carcharias)
82[114]
197Bloody crane's-bill
(Geranium sanguineum)
84 [115]
198Moonworts
(Botrychium)
90
199Grape fern
(Sceptridium)
90
200Pittier's crab-eating rat
(Ichthyomys pittieri)
92Previously thought to be the highest number in mammals, tied with Anotomys leander.[116]
201Prawn
(Penaeus semisulcatus)
[117]
202Aquatic rat
(Anotomys leander)
92Previously thought to be the highest number in mammals, tied with Ichthyomys pittieri.
203Kamraj (fern)
(Helminthostachys zeylanica)
94
204Crucian carp
(Carassius carassius)
100[118]
205Red viscacha rat
(Tympanoctomys barrerae)
102Highest number known in mammals, thought to be a tetraploid[119] or allotetraploid.[120] [121]
206Walking catfish
(Clarias batrachus)
104[122]
207American paddlefish
(Polyodon spathula)
120[123]
208Limestone fern
(Gymnocarpium robertianum)
160Tetraploid (2n = 4x = 160)[124]
209African baobab
(Adansonia digitata)
168Also known as the "tree of life". 2n = 4x = 168[125]
210Northern lampreys
(Petromyzontidae)
174[126]
211Rattlesnake fern
(Botrypus virginianus)
184[127]
212Red king crab
(Paralithodes camtschaticus)
208
213Field horsetail
(Equisetum arvense)
216
214Agrodiaetus butterfly
(Agrodiaetus shahrami)
268This insect has one of the highest chromosome numbers among all animals.[128]
215Black mulberry
(Morus nigra)
308Highest ploidy among plants, 22-ploid (2n = 22x = 308)[129] [130]
216Atlas blue
(Polyommatus atlantica)
2n = –452. Highest number of chromosomes in the non-polyploid eukaryotic organisms.[131]
217Adders-tongue
(Ophioglossum reticulatum)
1260n=120–720 with a high degree of polyploidization.[132] Ophioglossum reticulatum n=720 in hexaploid species, 2n=1260 in decaploid species.[133]
218Ciliated protozoa
(Tetrahymena thermophila)
50x = 12,500 (in macronucleus, except minichromosomes)
10,000x = 10,000 (macronuclear minichromosomes)[134]
219Ciliated protozoa
(Sterkiella histriomuscorum)
16000[135] Macronuclear "nanochromosomes"; ampliploid. MAC chromosomes × 1900 ploidy level = 2.964 × 107 chromosomes[136] [137] [138]

Further reading

External links

Notes and References

  1. Concise Oxford Dictionary
  2. Book: White MJ . The chromosomes . registration . Chapman & Hall . London . 1973 . 6th . 28.
  3. Book: Stebbins GL . Chapter XII: The Karyotype . Variation and evolution in plants . Columbia University Press . 1950 .
  4. Book: King RC, Stansfield WD, Mulligan PK . A dictionary of genetics . Oxford University Press . 2006 . 242 . 7th .
  5. Crosland MW, Crozier RH . Myrmecia pilosula, an Ant with Only One Pair of Chromosomes . Science . 231 . 4743 . 1278 . March 1986 . 17839565 . 10.1126/science.231.4743.1278 . 25465053 . 1986Sci...231.1278C .
  6. Helle W, Bolland HR, Gutierrez J . Minimal chromosome number in false spider mites (Tenuipalpidae). Experientia. 1972. 28. 6. 10.1007/BF01944992. 707. 29547273.
  7. Michailova P. 1976. Cytotaxonomical Diagnostics of Species from the Genus Cricotopus (Chironomidae, Diptera). Caryologia. 29. 3. 291–306. 10.1080/00087114.1976.10796669. free.
  8. Körner WH . 1952. Untersuchungen über die Gehäusebildung bei Appendicularien (Oikopleura dioica Fol). Zeitschrift für Morphologie und Ökologie der Tiere. 41. 1. 1–53. 43261846. 10.1007/BF00407623. 19101198.
  9. Book: Giannelli F, Hall JC, Dunlap JC, Friedmann T . Advances in Genetics, Volume 41 (Advances in Genetics) . Academic Press . Boston . 1999 . 2 . 978-0-12-017641-0 .
  10. Wang W, Lan H . Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny . Molecular Biology and Evolution . 17 . 9 . 1326–33 . September 2000 . 10958849 . 10.1093/oxfordjournals.molbev.a026416 . free .
  11. Wurster DH, Benirschke K . Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome number . Science . 168 . 3937 . 1364–6 . June 1970 . 5444269 . 10.1126/science.168.3937.1364 . 1970Sci...168.1364W . amp . 45371297 .
  12. Web site: Drosophila Genome Project. National Center for Biotechnology Information. 2009-04-14.
  13. Zadesenets KS, Vizoso DB, Schlatter A, Konopatskaia ID, Berezikov E, Schärer L, Rubtsov NB . Evidence for Karyotype Polymorphism in the Free-Living Flatworm, Macrostomum lignano, a Model Organism for Evolutionary and Developmental Biology . PLOS ONE . 11 . 10 . e0164915 . 2016 . 27755577 . 5068713 . 10.1371/journal.pone.0164915 . 2016PLoSO..1164915Z . free .
  14. Plant & Cell Physiology. 10.1093/pcp/pcv192. Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System. 2016. Shimamura. Masaki. 57. 2. 230–256. 26657892. free.
  15. Toder R, O'Neill RJ, Wienberg J, O'Brien PC, Voullaire L, Marshall-Graves JA . Comparative chromosome painting between two marsupials: origins of an XX/XY1Y2 sex chromosome system . Mammalian Genome . 8 . 6 . 418–22 . June 1997 . 9166586 . 10.1007/s003359900459 . 12515691 .
  16. Leach CR, Donald TM, Franks TK, Spiniello SS, Hanrahan CF, Timmis JN . Organisation and origin of a B chromosome centromeric sequence from Brachycome dichromosomatica . Chromosoma . 103 . 10 . 708–14 . July 1995 . 7664618 . 10.1007/BF00344232 . 12246995 .
  17. Fujito S, Takahata S, Suzuki R, Hoshino Y, Ohmido N, Onodera Y . Evidence for a Common Origin of Homomorphic and Heteromorphic Sex Chromosomes in Distinct Spinacia Species . G3 . 5 . 8 . 1663–73 . June 2015 . 26048564 . 4528323 . 10.1534/g3.115.018671 .
  18. Patlolla AK, Berry A, May L, Tchounwou PB . Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles . International Journal of Environmental Research and Public Health . 9 . 5 . 1649–62 . May 2012 . 22754463 . 3386578 . 10.3390/ijerph9051649 . free .
  19. Sbilordo SH, Martin OY, Ward PI . The karyotype of the yellow dung fly, Scathophaga stercoraria, a model organism in studies of sexual selection . Journal of Insect Science . 10 . 118 . 1–11 . 2010 . 20874599 . 3016996 . 10.1673/031.010.11801 .
  20. Web site: First of six chromosomes sequenced in Dictyostelium discoideum. Genome News Network. 2009-04-29.
  21. Zhang Y, Cheng C, Li J, Yang S, Wang Y, Li Z, Chen J, Lou Q . 6 . Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping . BMC Genomics . 16 . 1 . 730 . September 2015 . 26407707 . 4583154 . 10.1186/s12864-015-1877-6 . free .
  22. Schubert V, Ruban A, Houben A . Chromatin Ring Formation at Plant Centromeres . Frontiers in Plant Science . 7 . 28 . 2016 . 26913037 . 4753331 . 10.3389/fpls.2016.00028 . free .
  23. Haque SM, Ghosh B . High frequency microcloning of Aloe vera and their true-to-type conformity by molecular cytogenetic assessment of two years old field growing regenerated plants . Botanical Studies . 54 . 1 . 46 . December 2013 . 28510900 . 5430365 . 10.1186/1999-3110-54-46 . free . 2013BotSt..54...46H .
  24. Rofe RH . December 1978 . G-banded chromosomes and the evolution of macropodidae . Australian Mammalogy . 2 . 50–63 . 10.1071/AM78007 . 254728517 . 0310-0049 .
  25. Colombera D. 1974. Chromosome number within the class Ascidiacea. Marine Biology. 26. 1. 63–68. 10.1007/BF00389087. 1974MarBi..26...63C . 84189212.
  26. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, Mashiyama ST, Al-Lazikani B, Andrade LF, Ashton PD, Aslett MA, Bartholomeu DC, Blandin G, Caffrey CR, Coghlan A, Coulson R, Day TA, Delcher A, DeMarco R, Djikeng A, Eyre T, Gamble JA, Ghedin E, Gu Y, Hertz-Fowler C, Hirai H, Hirai Y, Houston R, Ivens A, Johnston DA, Lacerda D, Macedo CD, McVeigh P, Ning Z, Oliveira G, Overington JP, Parkhill J, Pertea M, Pierce RJ, Protasio AV, Quail MA, Rajandream MA, Rogers J, Sajid M, Salzberg SL, Stanke M, Tivey AR, White O, Williams DL, Wortman J, Wu W, Zamanian M, Zerlotini A, Fraser-Liggett CM, Barrell BG, El-Sayed NM . 6 . The genome of the blood fluke Schistosoma mansoni . Nature . 460 . 7253 . 352–8 . July 2009 . 19606141 . 2756445 . 10.1038/nature08160 . 2009Natur.460..352B .
  27. Nagaki K, Yamamoto M, Yamaji N, Mukai Y, Murata M . Chromosome dynamics visualized with an anti-centromeric histone H3 antibody in Allium . PLOS ONE . 7 . 12 . e51315 . 2012 . 23236469 . 3517398 . 10.1371/journal.pone.0051315 . 2012PLoSO...751315N . free .
  28. Mounsey KE, Willis C, Burgess ST, Holt DC, McCarthy J, Fischer K . Quantitative PCR-based genome size estimation of the astigmatid mites Sarcoptes scabiei, Psoroptes ovis and Dermatophagoides pteronyssinus . Parasites & Vectors . 5 . 3 . January 2012 . 22214472 . 3274472 . 10.1186/1756-3305-5-3 . free .
  29. Dunemann F, Schrader O, Budahn H, Houben A . Characterization of centromeric histone H3 (CENH3) variants in cultivated and wild carrots (Daucus sp.) . PLOS ONE . 9 . 6 . e98504 . 2014 . 24887084 . 4041860 . 10.1371/journal.pone.0098504 . 2014PLoSO...998504D . free .
  30. Guerra M, Pedrosa A, Cornélio MT, Santos K, Soares Filho WD . Chromosome number and secondary constriction variation in 51 accessions of a citrus germplasm bank . Brazilian Journal of Genetics . 1997 . 20 . 3 . 489–496. 10.1590/S0100-84551997000300021 . free.
  31. Hynniewta M, Malik SK, Rao SR . Karyological studies in ten species of Citrus(Linnaeus, 1753) (Rutaceae) of North-East India . Comparative Cytogenetics . 5 . 4 . 277–87 . 2011 . 24260635 . 3833788 . 10.3897/CompCytogen.v5i4.1796 . free .
  32. Souza, Margarete Magalhães, Telma N. Santana Pereira, and Maria Lúcia Carneiro Vieira. "Cytogenetic studies in some species of Passiflora L.(Passifloraceae): a review emphasizing Brazilian species." Brazilian Archives of Biology and Technology 51.2 (2008): 247–258. https://dx.doi.org/10.1590/S1516-89132008000200003
  33. Nani TF, Cenzi G, Pereira DL, Davide LC, Techio VH . Ribosomal DNA in diploid and polyploid Setaria (Poaceae) species: number and distribution . Comparative Cytogenetics . 9 . 4 . 645–60 . 2015 . 26753080 . 4698577 . 10.3897/CompCytogen.v9i4.5456 . free .
  34. Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M . 6 . A New Nomenclature of Xenopus laevis Chromosomes Based on the Phylogenetic Relationship to Silurana/Xenopus tropicalis . Cytogenetic and Genome Research . 145 . 3–4 . 187–91 . April 2015 . 25871511 . 10.1159/000381292 . 207626597 .
  35. Kondo K . Chromosome Numbers of Carnivorous Plants. Bulletin of the Torrey Botanical Club. May 1969. 96. 3. 322–328. 10.2307/2483737. 2483737.
  36. da Silva RA, Souza G, Lemos LS, Lopes UV, Patrocínio NG, Alves RM, Marcellino LH, Clement D, Micheli F, Gramacho KP . 6 . Genome size, cytogenetic data and transferability of EST-SSRs markers in wild and cultivated species of the genus Theobroma L. (Byttnerioideae, Malvaceae) . PLOS ONE . 12 . 2 . e0170799 . 2017 . 28187131 . 5302445 . 10.1371/journal.pone.0170799 . 2017PLoSO..1270799D . free .
  37. Oudjehih B, Abdellah B . Chromosome numbers of the 59 species of Eucalyptus L'Herit. (Myrtaceae). . Caryologia . 2006 . 59 . 3 . 207–212 . 10.1080/00087114.2006.10797916 . free.
  38. Balasaravanan T, Chezhian P, Kamalakannan R, Ghosh M, Yasodha R, Varghese M, Gurumurthi K . Determination of inter- and intra-species genetic relationships among six Eucalyptus species based on inter-simple sequence repeats (ISSR) . Tree Physiology . 25 . 10 . 1295–302 . October 2005 . 16076778 . 10.1093/treephys/25.10.1295 . free .
  39. Biggers JD, Fritz HI, Hare WC, Mcfeely RA . Chromosomes of American Marsupials . Science . 148 . 3677 . 1602–3 . June 1965 . 14287602 . 10.1126/science.148.3677.1602 . 46617910 . 1965Sci...148.1602B .
  40. Argyris JM, Ruiz-Herrera A, Madriz-Masis P, Sanseverino W, Morata J, Pujol M, Ramos-Onsins SE, Garcia-Mas J . 6 . Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly . BMC Genomics . 16 . 4 . January 2015 . 1 . 25612459 . 4316794 . 10.1186/s12864-014-1196-3 . free .
  41. Heiser CB, Whitaker TW . Chromosome number, polyploidy, and growth habit in California weeds . American Journal of Botany . 35 . 3 . 179–86 . March 1948 . 18909963 . 10.2307/2438241 . 2438241 .
  42. Ivanova D, Vladimirov V . 2007 . Chromosome numbers of some woody species from the Bulgarian flora . Phytologia Balcanica . 13 . 2. 205–207.
  43. Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, Matzke M, Schwarzacher T . 6 . Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species . BMC Plant Biology . 7 . 24 . May 2007 . 17517142 . 1899175 . 10.1186/1471-2229-7-24 . free .
  44. 10.1111/j.1365-2745.2012.02017.x . 100 . 6 . Biological Flora of the British Isles:Fagus sylvatica . 2012 . Journal of Ecology . 1557–1608 . Packham JR, Thomas PA, Atkinson MD, Degen T . 2012JEcol.100.1557P . 85095298 .
  45. Book: Abrams L. Illustrated Flora of the Pacific States. Volume 3.. 1951. Stanford University Press. 866.
  46. Book: Stace C . Clive Stace. New Flora of the British Isles. . Second . 1997. Cambridge, UK. 1130.
  47. Zaldoš V, Papeš D, Brown SC, Panaus O, Šiljak-Yakovlev S (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome, 41: 162–168.
  48. Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L . Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? . BMC Genetics . 17 . 1 . 100 . July 2016 . 27368375 . 4930623 . 10.1186/s12863-016-0408-z . free .
  49. Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P . Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization . Cytogenetic and Genome Research . 134 . 3 . 206–12 . 2011 . 21555873 . 10.1159/000327716 . 452336 .
  50. Keinath MC, Timoshevskiy VA, Timoshevskaya NY, Tsonis PA, Voss SR, Smith JJ . Initial characterization of the large genome of the salamander Ambystoma mexicanum using shotgun and laser capture chromosome sequencing . Scientific Reports . 5 . 16413 . November 2015 . 26553646 . 4639759 . 10.1038/srep16413 . 2015NatSR...516413K .
  51. Sadílek D, Angus RB, Šťáhlavský F, Vilímová J . Comparison of different cytogenetic methods and tissue suitability for the study of chromosomes in Cimex lectularius (Heteroptera, Cimicidae) . Comparative Cytogenetics . 10 . 4 . 731–752 . 2016 . 28123691 . 5240521 . 10.3897/CompCytogen.v10i4.10681 . free .
  52. Achar KP . Analysis of male meiosis in seven species of Indian pill-millipede. Caryologia. 39. 1986. 39. 89–101. 10.1080/00087114.1986.10797770. free.
  53. Huang L, Nesterenko A, Nie W, Wang J, Su W, Graphodatsky AS, Yang F . Karyotype evolution of giraffes (Giraffa camelopardalis) revealed by cross-species chromosome painting with Chinese muntjac (Muntiacus reevesi) and human (Homo sapiens) paints . Cytogenetic and Genome Research . 122 . 2 . 132–8 . 2008 . 19096208 . 10.1159/000163090 . 6674957 .
  54. Sola-Campoy PJ, Robles F, Schwarzacher T, Ruiz Rejón C, de la Herrán R, Navajas-Pérez R . The Molecular Cytogenetic Characterization of Pistachio (Pistacia vera L.) Suggests the Arrest of Recombination in the Largest Heteropycnotic Pair HC1 . PLOS ONE . 10 . 12 . e0143861 . 2015 . 26633808 . 4669136 . 10.1371/journal.pone.0143861 . 2015PLoSO..1043861S . free .
  55. Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, Choi KH, Kim SW, Hwang JS, Kim M, Kim I, Goo TW, Park SW . 6 . Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae . GigaScience . 7 . 1 . 1–11 . January 2018 . 29186418 . 5774507 . 10.1093/gigascience/gix113 .
  56. Gempe T, Hasselmann M, Schiøtt M, Hause G, Otte M, Beye M . Sex determination in honeybees: two separate mechanisms induce and maintain the female pathway . PLOS Biology . 7 . 10 . e1000222 . October 2009 . 19841734 . 2758576 . 10.1371/journal.pbio.1000222 . free .
  57. Book: Simmonds, NW . Evolution of crop plants . Longman . New York . 1976 . 978-0-582-44496-6 .
  58. Rubtsov . Nikolai B. . The Fox Gene Map . ILAR . 39 . 2–3 . 182–188 . 1 April 1998 . 10.1093/ilar.39.2-3.182 . 11528077 . free .
  59. Feng J, Liu Z, Cai X, Jan CC . Toward a molecular cytogenetic map for cultivated sunflower (Helianthus annuus L.) by landed BAC/BIBAC clones . G3 . 3 . 1 . 31–40 . January 2013 . 23316437 . 3538341 . 10.1534/g3.112.004846 .
  60. Giorgi D, Pandozy G, Farina A, Grosso V, Lucretti S, Gennaro A, Crinò P, Saccardo F . 6 . First detailed karyo-morphological analysis and molecular cytological study of leafy cardoon and globe artichoke, two multi-use Asteraceae crops . Comparative Cytogenetics . 10 . 3 . 447–463 . 2016 . 27830052 . 5088355 . 10.3897/CompCytogen.v10i3.9469 . free .
  61. An F, Fan J, Li J, Li QX, Li K, Zhu W, Wen F, Carvalho LJ, Chen S . 6 . Comparison of leaf proteomes of cassava (Manihot esculenta Crantz) cultivar NZ199 diploid and autotetraploid genotypes . PLOS ONE . 9 . 4 . e85991 . 2014 . 24727655 . 3984080 . 10.1371/journal.pone.0085991 . 2014PLoSO...985991A . free .
  62. Perelman PL, Graphodatsky AS, Dragoo JW, Serdyukova NA, Stone G, Cavagna P, Menotti A, Nie W, O'Brien PC, Wang J, Burkett S, Yuki K, Roelke ME, O'Brien SJ, Yang F, Stanyon R . 6 . Chromosome painting shows that skunks (Mephitidae, Carnivora) have highly rearranged karyotypes . Chromosome Research . 16 . 8 . 1215–31 . 2008 . 19051045 . 10.1007/s10577-008-1270-2 . 952184 .
  63. Dowling HG, Price RM . A proposed new genus for Elaphe subocularis and Elaphe rosaliae. . The Snake . 1988 . 20 . 1 . 52–63 . https://web.archive.org/web/20141029225046/http://dustyrhoads.x10host.com/Dusty_Rhoads_-_snake_biology/Publications_files/bogertophis_genus_dowling_and_price_1988.pdf . 29 October 2014 .
  64. Baker . R. J. . Bull . J. J. . Mengden . G. A. . 1971 . Chromosomes ofElaphe subocularis (Reptilia: Serpentes), with the description of an in vivo technique for preparation of snake chromosomes . Experientia . en . 27 . 10 . 1228–1229 . 10.1007/BF02286946.
  65. http://research.jax.org/grs/type/chromosomal_abberati.html The Jackson Laboratory
  66. Milla SR, Isleib TG, Stalker HT . Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers . Genome . 48 . 1 . 1–11 . February 2005 . 15729391 . 10.1139/g04-089 .
  67. Moore CM, Dunn BG, McMahan CA, Lane MA, Roth GS, Ingram DK, Mattison JA . Effects of calorie restriction on chromosomal stability in rhesus monkeys (Macaca mulatta) . Age . 29 . 1 . 15–28 . March 2007 . 19424827 . 2267682 . 10.1007/s11357-006-9016-6 .
  68. Web site: Rnor_6.0 - Assembly - NCBI. www.ncbi.nlm.nih.gov.
  69. Diupotex-Chong ME, Ocaña-Luna A, Sánchez-Ramírez M . Chromosome analysis of Linné, 1758 (Scyphozoa: Ulmaridae), southern Gulf of Mexico. Marine Biology Research. July 2009. 5. 4. 399–403. 10.1080/17451000802534907. 84514554.
  70. Geleta M, Herrera I, Monzón A, Bryngelsson T . Genetic diversity of arabica coffee (Coffea arabica L.) in Nicaragua as estimated by simple sequence repeat markers . TheScientificWorldJournal . 2012 . 939820 . 2012 . 22701376 . 3373144 . 10.1100/2012/939820 . free .
  71. Web site: Human Genome Project. National Center for Biotechnology Information. 2009-04-29.
  72. Gallagher. D. S.. Davis. S. K.. De Donato. M.. Burzlaff. J. D.. Womack. J. E.. Taylor. J. F.. Kumamoto. A. T.. November 1998. A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae). Chromosome Research. 6. 7. 505–513. 10.1023/a:1009268917856. 0967-3849. 9886771. 21120780.
  73. Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, Di Donfrancesco A, Pouchkina-Stancheva N, Sémon M, Grillo M, Bruce H, Kumar S, Siwanowicz I, Le A, Lemire A, Eisen MB, Extavour C, Browne WE, Wolff C, Averof M, Patel NH, Sarkies P, Pavlopoulos A, Aboobaker A . 6 . The genome of the crustacean Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion . eLife . 5 . November 2016 . 27849518 . 5111886 . 10.7554/eLife.20062 . free .
  74. Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV . 6 . The tobacco genome sequence and its comparison with those of tomato and potato . Nature Communications . 5 . 3833 . May 2014 . 24807620 . 4024737 . 10.1038/ncomms4833 . 2014NatCo...5.3833S .
  75. Machida-Hirano R . Diversity of potato genetic resources . Breeding Science . 65 . 1 . 26–40 . March 2015 . 25931978 . 4374561 . 10.1270/jsbbs.65.26 .
  76. Robinson TJ, Yang F, Harrison WR . Chromosome painting refines the history of genome evolution in hares and rabbits (order Lagomorpha) . Cytogenetic and Genome Research . 96 . 1–4 . 223–7 . 2002 . 12438803 . 10.1159/000063034 . 19327437 .
  77. Book: Rabbits, Hares and Pikas. Status Survey and Conservation Action Plan . 4.W4 . 61–94 . dead . https://web.archive.org/web/20110505143212/http://wildlife1.wildlifeinformation.org/S/00Ref/BooksContents/b605.htm . 2011-05-05.
  78. Young WJ, Merz T, Ferguson-Smith MA, Johnston AW . Chromosome number of the chimpanzee, Pan troglodytes . Science . 131 . 3414 . 1672–3 . June 1960 . 13846659 . 10.1126/science.131.3414.1672 . 36235641 . 1960Sci...131.1672Y .
  79. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan YL, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS . 6 . Zebrafish comparative genomics and the origins of vertebrate chromosomes . Genome Research . 10 . 12 . 1890–902 . December 2000 . 11116085 . 10.1101/gr.164800 . free .
  80. Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family. Anna Grzesiakowska. Przemysław Baran,2 . Marta Kuchta-Gładysz. Olga Szeleszczuk1. Journal of Veterinary Research. 2019. 63. 3. 353–358. 10.2478/jvetres-2019-0041. 31572815. 6749745.
  81. Cytogenetic Karyotype Analysis in Selected Species of the Erinaceidae Family. Anna Grzesiakowska. Przemysław Baran. Marta Kuchta-Gładysz. Olga Szeleszczuk1. Journal of Veterinary Research. 2019. 63. 3. 353–358. 10.2478/jvetres-2019-0041. 31572815. 6749745.
  82. Book: Brien S . Atlas of mammalian chromosomes . Wiley-Liss . Hoboken, NJ . 2006 . 978-0-471-35015-6 . 2 .
  83. Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, Belov K, Miller W, Clarke L, Chinwalla AT, Yang SP, Heger A, Locke DP, Miethke P, Waters PD, Veyrunes F, Fulton L, Fulton B, Graves T, Wallis J, Puente XS, López-Otín C, Ordóñez GR, Eichler EE, Chen L, Cheng Z, Deakin JE, Alsop A, Thompson K, Kirby P, Papenfuss AT, Wakefield MJ, Olender T, Lancet D, Huttley GA, Smit AF, Pask A, Temple-Smith P, Batzer MA, Walker JA, Konkel MK, Harris RS, Whittington CM, Wong ES, Gemmell NJ, Buschiazzo E, Vargas Jentzsch IM, Merkel A, Schmitz J, Zemann A, Churakov G, Kriegs JO, Brosius J, Murchison EP, Sachidanandam R, Smith C, Hannon GJ, Tsend-Ayush E, McMillan D, Attenborough R, Rens W, Ferguson-Smith M, Lefèvre CM, Sharp JA, Nicholas KR, Ray DA, Kube M, Reinhardt R, Pringle TH, Taylor J, Jones RC, Nixon B, Dacheux JL, Niwa H, Sekita Y, Huang X, Stark A, Kheradpour P, Kellis M, Flicek P, Chen Y, Webber C, Hardison R, Nelson J, Hallsworth-Pepin K, Delehaunty K, Markovic C, Minx P, Feng Y, Kremitzki C, Mitreva M, Glasscock J, Wylie T, Wohldmann P, Thiru P, Nhan MN, Pohl CS, Smith SM, Hou S, Nefedov M, de Jong PJ, Renfree MB, Mardis ER, Wilson RK . 6 . Genome analysis of the platypus reveals unique signatures of evolution . Nature . 453 . 7192 . 175–83 . May 2008 . 18464734 . 2803040 . 10.1038/nature06936 . 2008Natur.453..175W .
  84. Chen H, Khan MK, Zhou Z, Wang X, Cai X, Ilyas MK, Wang C, Wang Y, Li Y, Liu F, Wang K . 6 . A high-density SSR genetic map constructed from a F2 population of Gossypium hirsutum and Gossypium darwinii . Gene . 574 . 2 . 273–86 . December 2015 . 26275937 . 10.1016/j.gene.2015.08.022 .
  85. "Hyrax: The Little Brother of the Elephant", Wildlife on One, BBC TV.
  86. Book: O'Brien SJ, Meninger JC, Nash WG . Atlas of Mammalian Chromosomes. 78. John Wiley & sons. 2006. 978-0-471-35015-6.
  87. Book: Ostrander EA . Genetics of the Dog. 1 January 2012. CABI. 978-1-84593-941-0. 250–.
  88. Mäkinen A, Kuokkanen MT, Valtonen M . A chromosome-banding study in the Finnish and the Japanese raccoon dog . Hereditas . 105 . 1 . 97–105 . 1986 . 3793521 . 10.1111/j.1601-5223.1986.tb00647.x . free .
  89. 10.1590/S1413-95962002000600010 . Analysis of some normal parameters of the spermiogram of captive capuchin monkeys (Cebus apella Linnaeus, 1758) . 2002 . Barnabe RC, Guimarães MA, Oliveira CA, Barnabe AH . Brazilian Journal of Veterinary Research and Animal Science . 39. 6 . free .
  90. Peigler . Richard S. . 1993 . Wild Silks of the World . American Entomologist . en . 39 . 3 . 151–162 . 10.1093/ae/39.3.151.
  91. Yoshido A, Yasukochi Y, Sahara K . Samia cynthia versus Bombyx mori: comparative gene mapping between a species with a low-number karyotype and the model species of Lepidoptera . Insect Biochemistry and Molecular Biology . 41 . 6 . 370–7 . June 2011 . 21396446 . 10.1016/j.ibmb.2011.02.005 . 2011IBMB...41..370Y . 2115/45607 . 38794541 . free .
  92. Mahendran B, Ghosh SK, Kundu SC . Molecular phylogeny of silk-producing insects based on 16S ribosomal RNA and cytochrome oxidase subunit I genes . Journal of Genetics . 85 . 1 . 31–8 . April 2006 . 16809837 . 10.1007/bf02728967 . 11733404 .
  93. Yoshido A, Bando H, Yasukochi Y, Sahara K . The Bombyx mori karyotype and the assignment of linkage groups . Genetics . 170 . 2 . 675–85 . June 2005 . 15802516 . 1450397 . 10.1534/genetics.104.040352 .
  94. Liu B, Davis TM . Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) . BMC Plant Biology . 11 . 157 . November 2011 . 22074487 . 3261831 . 10.1186/1471-2229-11-157 . free .
  95. Claro . Françoise . Hayes . Hélène . Cribiu . Edmond Paul . The R- and G-Banded Karyotypes of the Sable Antelope (Hippotragus niger) . Journal of Heredity . November 1993 . 84 . 6 . 481–484 . 10.1093/oxfordjournals.jhered.a111376 . 8270772 . 6 March 2021.
  96. Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, Halley Y, Fisher CA, Owens E, Viswanathan G, Tizard IR . 6 . A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao) . PLOS ONE . 8 . 5 . e62415 . 2013 . 23667475 . 3648530 . 10.1371/journal.pone.0062415 . 2013PLoSO...862415S . free .
  97. Rens W, O'Brien PC, Grützner F, Clarke O, Graphodatskaya D, Tsend-Ayush E, Trifonov VA, Skelton H, Wallis MC, Johnston S, Veyrunes F, Graves JA, Ferguson-Smith MA . 6 . The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z . Genome Biology . 8 . 11 . R243 . 2007 . 18021405 . 2258203 . 10.1186/gb-2007-8-11-r243 . free .
  98. Web site: Metapress – Discover More. 24 June 2016.
  99. Svartman M, Stone G, Stanyon R . The ancestral eutherian karyotype is present in Xenarthra . PLOS Genetics . 2 . 7 . e109 . July 2006 . 16848642 . 1513266 . 10.1371/journal.pgen.0020109 . free .
  100. de Oliveira EH, Tagliarini MM, dos Santos MS, O'Brien PC, Ferguson-Smith MA . Chromosome painting in three species of buteoninae: a cytogenetic signature reinforces the monophyly of South American species . PLOS ONE . 8 . 7 . e70071 . 2013 . 23922908 . 3724671 . 10.1371/journal.pone.0070071 . 2013PLoSO...870071D . free .
  101. Smith HB . Chromosome Counts in the Varieties of SOLANUM TUBEROSUM and Allied Wild Species . Genetics . 12 . 1 . 84–92 . January 1927 . 10.1093/genetics/12.1.84 . 17246516 . 1200928 .
  102. Li XL, Lin RS, Fung HL, Qi ZX, Song WQ, Chen RY . Chromosome numbers of some caespitose bamboos native in or introduced to China . Chromosome numbers of some caespitose bamboos native in or introduced to China . Journal of Systematics and Evolution . zh:中国部分丛生竹类染色体数目报道 . 39 . 5 . 433–442 . September 2001 . zh-cn .
  103. Guttenbach M, Nanda I, Feichtinger W, Masabanda JS, Griffin DK, Schmid M . Comparative chromosome painting of chicken autosomal paints 1-9 in nine different bird species . Cytogenetic and Genome Research . 103 . 1–2 . 173–84 . 2003 . 15004483 . 10.1159/000076309 . 23508684 .
  104. Web site: Canis lupus familiaris (dog) . www.ncbi.nlm.nih.gov.
  105. Maeda J, Yurkon CR, Fujisawa H, Kaneko M, Genet SC, Roybal EJ, Rota GW, Saffer ER, Rose BJ, Hanneman WH, Thamm DH, Kato TA . 6 . Genomic instability and telomere fusion of canine osteosarcoma cells . PLOS ONE . 7 . 8 . e43355 . 2012 . 22916246 . 3420908 . 10.1371/journal.pone.0043355 . 2012PLoSO...743355M . free .
  106. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES . 6 . Genome sequence, comparative analysis and haplotype structure of the domestic dog . Nature . 438 . 7069 . 803–19 . December 2005 . 16341006 . 10.1038/nature04338 . free . 2005Natur.438..803L .
  107. Book: Sillero-Zubiri C, Hoffmann MJ, Mech D . Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan . World Conservation Union . 2004 . 978-2-8317-0786-0 .
  108. Aslam ML, Bastiaansen JW, Crooijmans RP, Vereijken A, Megens HJ, Groenen MA . A SNP based linkage map of the turkey genome reveals multiple intrachromosomal rearrangements between the turkey and chicken genomes . BMC Genomics . 11 . 647 . November 2010 . 21092123 . 3091770 . 10.1186/1471-2164-11-647 . free .
  109. Web site: Saccharum officinarum L. | Plants of the World Online | Kew Science . 2017-07-02.
  110. Book: Henry RJ, Kole C . Genetics, Genomics and Breeding of Sugarcane. 15 August 2010. CRC Press. 978-1-4398-4860-9. 70.
  111. Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, Chen C, Najar F, Wiley G, Bowers J, Van Sluys MA, Rokhsar DS, Hudson ME, Moose SP, Paterson AH, Ming R . 6 . Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes . BMC Genomics . 11 . 261 . April 2010 . 20416060 . 2882929 . 10.1186/1471-2164-11-261 . free .
  112. Ohno S, Stenius C, Christian LC, Becak W, Becak ML . Chromosomal uniformity in the avian subclass Carinatae . Chromosoma . 15 . 3 . 280–8 . August 1964 . 14196875 . 10.1007/BF00321513 . 12310455 .
  113. Roslik, G.V. and Kryukov A. (2001). A Karyological Study of Some Corvine Birds (Corvidae, Aves). Russian Journal of Genetics 37(7):796-806. DOI: 10.1023/A:1016703127516
  114. Gregory, T.R. (2015). Animal Genome Size Database. http://www.genomesize.com/result_species.php?id=1701
  115. Can Knowledge of Genetic Distances, Genome Sizes and Chromosome Numbers Support Breeding Programs in Hardy Geraniums? . 2021 . 8152959 . Akbarzadeh . M. . Van Laere . K. . Leus . L. . De Riek . J. . Van Huylenbroeck . J. . Werbrouck . S. P. . Dhooghe . E. . Genes . 12 . 5 . 730 . 10.3390/genes12050730 . 34068148 . free .
  116. Schmid M, Fernández-Badillo A, Feichtinger W, Steinlein C, Roman JI . On the highest chromosome number in mammals . Cytogenetics and Cell Genetics . 49 . 4 . 305–8 . 1988 . 3073914 . 10.1159/000132683 .
  117. Hosseini SJ, Elahi E, Raie RM . The Chromosome Number of the Persian Gulf Shrimp Penaeus semisulcatus . Iranian Int. J. Sci . 5 . 1 . 13–23 . 2004.
  118. Spoz A, Boron A, Porycka K, Karolewska M, Ito D, Abe S, Kirtiklis L, Juchno D . 6 . Molecular cytogenetic analysis of the crucian carp, Carassius carassius (Linnaeus, 1758) (Teleostei, Cyprinidae), using chromosome staining and fluorescence in situ hybridisation with rDNA probes . Comparative Cytogenetics . 8 . 3 . 233–48 . 2014 . 25349674 . 4205492 . 10.3897/CompCytogen.v8i3.7718 . free .
  119. Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N . Discovery of tetraploidy in a mammal . Nature . 401 . 6751 . 341 . September 1999 . 10517628 . 10.1038/43815 . 1999Natur.401..341G . 1808633 . free .
  120. Gallardo MH, González CA, Cebrián I . Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae) . Genomics . 88 . 2 . 214–21 . August 2006 . 16580173 . 10.1016/j.ygeno.2006.02.010 . free . August 2006 .
  121. Contreras LC, Torres-Mura JC, Spotorno AE . The largest known chromosome number for a mammal, in a South American desert rodent . Experientia . 46 . 5 . 506–8 . May 1990 . 2347403 . 10.1007/BF01954248 . 33553988 .
  122. Maneechot N, Yano CF, Bertollo LA, Getlekha N, Molina WF, Ditcharoen S, Tengjaroenkul B, Supiwong W, Tanomtong A, de Bello Cioffi M . 6 . Genomic organization of repetitive DNAs highlights chromosomal evolution in the genus Clarias (Clariidae, Siluriformes) . Molecular Cytogenetics . 9 . 4 . 2016 . 26793275 . 4719708 . 10.1186/s13039-016-0215-2 . free .
  123. Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, Gela D, Ráb P . 6 . Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula) . BMC Genetics . 18 . 1 . 19 . March 2017 . 28253860 . 5335500 . 10.1186/s12863-017-0484-8 . free .
  124. Web site: Chromosome numbers of Polish ferns . researchgate.net.
  125. Islam-Faridi N, Sakhanokho HF, Dana Nelson C . New chromosome number and cyto-molecular characterization of the African Baobab (Adansonia digitata L.) - "The Tree of Life" . Scientific Reports . 10 . 1 . 13174 . August 2020 . 32764541 . 10.1038/s41598-020-68697-6 . 7413363 . 2020NatSR..1013174I . free .
  126. Web site: Family Petromyzontidae – Northern lampreys. Eschmeyer WM .
  127. Book: Flora of North America . . 1993 . Flora of North America Editorial Committee .
  128. Lukhtanov VA, Kandul NP, Plotkin JB, Dantchenko AV, Haig D, Pierce NE . Reinforcement of pre-zygotic isolation and karyotype evolution in Agrodiaetus butterflies . Nature . 436 . 7049 . 385–9 . July 2005 . 16034417 . 10.1038/nature03704 . 4431492 . 2005Natur.436..385L .
  129. Web site: Morus nigra (black mulberry). 2020-08-29. www.cabi.org. en.
  130. Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, Xiang Z, He N . 6 . Definition of Eight Mulberry Species in the Genus Morus by Internal Transcribed Spacer-Based Phylogeny . PLOS ONE . 10 . 8 . e0135411 . 2015 . 26266951 . 4534381 . 10.1371/journal.pone.0135411 . 2015PLoSO..1035411Z . free .
  131. Lukhtanov VA . The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms . Comparative Cytogenetics . 9 . 4 . 683–90 . 2015 . 26753083 . 4698580 . 10.3897/CompCytogen.v9i4.5760 . free .
  132. Lukhtanov VA . The blue butterfly Polyommatus (Plebicula) atlanticus (Lepidoptera, Lycaenidae) holds the record of the highest number of chromosomes in the non-polyploid eukaryotic organisms . Comparative Cytogenetics . 9 . 4 . 683–90 . 2015-07-10 . 26753083 . 4698580 . 10.3897/compcytogen.v9i4.5760 . free .
  133. 10.1080/00087114.1979.10796781. Occurrence of Various Cytotypes of Ophioglossum ReticulatumL. In a Population from N. E. India. Caryologia. 32. 2. 135–146. 1979. Sinha BM, Srivastava DP, Jha J . free.
  134. Mochizuki K . DNA rearrangements directed by non-coding RNAs in ciliates . Wiley Interdisciplinary Reviews. RNA . 1 . 3 . 376–87 . 2010 . 21956937 . 3746294 . 10.1002/wrna.34 .
  135. News: Miller . Greg . This Bizarre Organism Builds Itself a New Genome Every Time It Has Sex . 1 June 2021 . Wired . 17 September 2014.
  136. Kumar S, Kumari R . Origin, structure and function of millions of chromosomes present in the macronucleus of unicellular eukaryotic ciliate, Oxytricha trifallax: a model organism for transgenerationally programmed genome rearrangements . Journal of Genetics . 94 . 2 . 171–6 . June 2015 . 26174664 . 10.1007/s12041-015-0504-2 . 14181659 .
  137. Swart EC, Bracht JR, Magrini V, Minx P, Chen X, Zhou Y, Khurana JS, Goldman AD, Nowacki M, Schotanus K, Jung S, Fulton RS, Ly A, McGrath S, Haub K, Wiggins JL, Storton D, Matese JC, Parsons L, Chang WJ, Bowen MS, Stover NA, Jones TA, Eddy SR, Herrick GA, Doak TG, Wilson RK, Mardis ER, Landweber LF . 6 . The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes . PLOS Biology . 11 . 1 . e1001473 . 2013-01-29 . 23382650 . 3558436 . 10.1371/journal.pbio.1001473 . free .
  138. Web site: Yong E . You Have 46 Chromosomes. This Pond Creature Has 15,600 . National Geographic . 6 February 2013 . https://web.archive.org/web/20130208221253/http://phenomena.nationalgeographic.com/2013/02/06/you-have-46-chromsomes-this-pond-creature-has-15600/ . dead . February 8, 2013 .