List of nonlinear ordinary differential equations explained

Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations. This list presents nonlinear ordinary differential equations that have been named, sorted by area of interest.

Mathematics

NameOrderEquationApplicationReference
1
dy
dx

=fo(x)+f1(x)y+f2(x)y2+f3(x)y3

Class of differential equation which may be solved implicitly[1]
Abel's differential equation of the second kind1

(go(x)+g1(x)y)

dy
dx

=fo(x)+f1(x)y+f2(x)y2+f3(x)y3

Class of differential equation which may be solved implicitly
1
dy
dx

+P(x)y=Q(x)yn

Class of differential equation which may be solved exactly[2]
Binomial differential equation

m

\left(y'\right)m=f(x,y)

Class of differential equation which may sometimes be solved exactly[3]
Briot-Bouquet Equation1

xmy'=f(x,y)

Class of differential equation which may sometimes be solved exactly[4]
Cherwell-Wright differential equation1
dx
dt

=(a-x(t-1))x(t)

or the related form

f'(x)=

-f(x)f(\sqrt{x
)}{2x}
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory[5] [6] [7]
Chrystal's equation1
\left(dy
dx

\right)2+Ax

dy
dx

+By+Cx2=0

Generalization of Clairaut's equation with a singular solution[8]
Clairaut's equation1

y=x

dy
dx

+f\left(

dy
dx

\right)

Particular case of d'Alembert's equation which may be solved exactly[9]
d'Alembert's equation or Lagrange's equation 1

y=xf\left(

dy
dx

\right)+g\left(

dy
dx

\right)

May be solved exactly[10]
Darboux equation1
dy
dx

=

P(x,y)+yR(x,y)
Q(x,y)+xR(x,y)
Can be reduced to a Bernoulli differential equation; a general case of the Jacobi equation[11]
Elliptic function1

y'=\sqrt{\left(1-y2\right)\left(1-k2y2\right)}

Equation for which the elliptic functions are solutions[12]
Euler's differential equation1
dy
dx

+

\sqrt{a0+a1y+a2y2+a3y3+a4y4
} = 0
A separable differential equation[13]
Euler's differential equation1

y'+y'2=\alphaxm

A differential equation which may be solved with Bessel functions
Jacobi equation1
dy
dx

=

Axy+By2+ax+by+c
Ax2+Bxy+\alphax+\betay+\gamma
Special case of the Darboux equation, integrable in closed form[14]
Loewner differential equation1
dw
dt

=-wpt(w)

Important in complex analysis and geometric function theory[15]
Logistic differential equation (sometimes known as the Verhulst model)2
d
dx

f(x)=f(x)(1-f(x))

Special case of the Bernoulli differential equation; many applications including in population dynamics[16]
Lorenz attractor1
\begin{align} dx
dt

&=\sigma(y-x)\\

dy
dt

&=x(\rho-z)-y\\

dz
dt

&=xy-\betaz \end{align}

Chaos theory, dynamical systems, meteorology[17]
Nahm equations1
\begin{align} dT1
dz

&=[T2,T

3]\\ dT2
dz

&=[T3,T

1]\\ dT3
dz

&=[T1,T2] \end{align}

Differential geometry, gauge theory, mathematical physics, magnetic monopoles[18]
Painlevé I transcendent2
d2y
dt2

=6y2+t

One of fifty classes of differential equation of the form

y''=R(y',y,t)

; the six Painlevé transcendents required new special functions to solve
[19]
Painlevé II transcendent2
d2y
dt2

=2y3+ty+\alpha

One of fifty classes of differential equation of the form

y''=R(y',y,t)

; the six Painlevé transcendents required new special functions to solve
Painlevé III transcendent2
tyd2y
dt2

=t\left(

dy
dt
2-ydy
dt
\right)

+\deltat+\betay+\alphay3+\gammaty4

One of fifty classes of differential equation of the form

y''=R(y',y,t)

; the six Painlevé transcendents required new special functions to solve
Painlevé IV transcendent2
yd2y
dt2

=\tfrac12\left(

dy
dt

\right)2+\beta+2(t2-\alpha)y2+4ty3+\tfrac32y4

One of fifty classes of differential equation of the form

y''=R(y',y,t)

; the six Painlevé transcendents required new special functions to solve
Painlevé V transcendent2
d2y=\left(
dt2
1+
2y
1
y-1

\right)\left(

dy
dt
2 -1
t
\right)
dy+
dt
(y-1)2
t2

\left(\alphay+

\beta
y

\right)+\gamma

y+\delta
t
y(y+1)
y-1
One of fifty classes of differential equation of the form

y''=R(y',y,t)

; the six Painlevé transcendents required new special functions to solve
Painlevé VI transcendent2
\begin{align} d2y&=
dt2
1\left(
2
1+
y
1+
y-1
1
y-t

\right)\left(

dy
dt
2-\left(1
t
\right)+
1+
t-1
1\right)
y-t
dy\\ &+
dt
y(y-1)(y-t)\left(\alpha+\beta
t2(t-1)2
t+\gamma
y2
t-1+\delta
(y-1)2
t(t-1)
(y-t)2

\right)\\ \end{align}

All of the other Painlevé transcendents are degenerations of the sixth
Rabinovich–Fabrikant equations1
\begin{align} x

&=y(z-1+x2)+\gammax\\

y

&=x(3z+1-x2)+\gammay\\

z

&=-2z(\alpha+xy) \end{align}

Chaos theory, dynamical systems[20]
Riccati equation1
dy
dx

+Q(x)y+R(x)y2=P(x)

Class of first order differential equations that is quadratic in the unknown. Can reduce to Bernoulli differential equation or linear differential equation in certain cases[21]
Rössler attractor1

\begin{align}

dx
dt

&=-y-z\

dy
dt

&=x+ay\

dz
dt

&=b+z(x-c)\end{align}

Chaos theory, dynamical systems

Physics

NameOrderEquationApplicationsReference
Bellman's equation or Emden-Fowler's equation2
d
dt

\left(t\rho

du
dt

\right)=t\sigmau\rho

(Emden-Fowler) which reduces to
d2u
dx2

=\phi2up

if

\sigma+\rho=0

(Bellman)
Diffusion in a slab[22]
2
Rd2R
dt2

+

3\left(
2
dR
dt

\right)2+

4\nuL
R
dR
dt

+

2\sigma
\rhoLR

+

\DeltaP(t)
\rho

=0

Spherical bubble in fluid dynamics[23]
3
d3y
dx3

+y

d2y
dx2

=0

Blasius boundary layer[24]
2
1
x2
d
dx

\left(x2

dy
dx

\right)+(y2-c)3/2=0

Gravitational potential of white dwarf in astrophysics[25]
2
d2y
dx2

-xy=y

y^\alpha, \ \alpha>0Plasma physics[26]
Emden–Chandrasekhar equation2
1
\xi2
d
d\xi

\left(\xi2

d\psi
d\xi

\right)=e-\psi

Astrophysics
Ermakov-Pinney equation2

\ddot{x}+\omega2x=

h2
x3
Electromagnetism, oscillation, scalar field cosmologies[27] [28]
Falkner–Skan equation3
d3y
dx3

+y

d2y
dx2

+\beta\left[1-\left(

dy
dx

\right)2\right]=0

Falkner–Skan boundary layer[29]
Friedmann equations2
\ddot{a
} = -\frac\left(\rho+\frac\right) + \frac and
a2+kc2
a2

=

8\piG\rhoc2
3
Physical cosmology[30]
Heisenberg equation of motion1
d\hat{A(t)
} = \frac[\hat{\mathcal{H}}, \hat{A}]
Quantum mechanics[31]
Ivey's equation2
d2y
dx2

-

1\left(
y
dy
dx

\right)2+

2
x
dy
dx

+ky2=0

Space charge theory[32]
Kidder equation2

\sqrt{1-\alphay}

d2y
dx2

+2x

dy
dx

=0, 0\leq\alpha\leq1

Flow through porous medium[33]
Krogdahl equation2
d2Q
d\tau2

=-Q+

2
3

λQ2+

14
27

λ2Q3+

2)dQ
d\tau
\mu(1-Q

+

2
3

λ(1-λQ)\left(

dQ
d\tau

\right)2+ …

Stellar pulsation in astrophysics[34]
Lagerstrom equation2

y''+

k
r

y'+\epsilony'y=0

One dimensional viscous flow at low Reynolds numbers[35]
Lane–Emden equation or polytropic differential equation2
1
\xi2
d
d\xi

\left({\xi2

d\theta
d\xi
}\right) + \theta^n = 0
Astrophysics[36]
Liñán's equation2
d2y
d\zeta2

=(y2-\zeta2)e

-\delta1/3(y+\gamma\zeta)
Combustion[37]
Pendulum equation2
d2\theta+
dt2
g
\ell

\sin\theta=0

Mechanics[38]
Poisson–Boltzmann equation (1d case)2
d2\theta
dz2

+

k
z
d\theta
dz

=-\deltae\theta

Inflammability and the theory of thermal explosions[39]
Stuart–Landau equation1
dA
dt

=\sigmaA-

l
2

A

A^2Hydrodynamic stability
Taylor–Maccoll equation2

(c2-f'2)f''+c2\cot\thetaf'+(2c2-f'2)f=0,c=c(f2+f'2)

where

f'=

df
d\theta
Flow behind a conical shock wave[40]
Thomas–Fermi equation2
d2y
dx2

=

1
\sqrtx

y3/2

Quantum mechanics[41] [42]
Toda lattice1
\begin{align} a

(n,t)&=a(n,t)(b(n+1,t)-b(n,t))\\

b

(n,t)&=2(a(n,t)2-a(n-1,t)2) \end{align}

where

\begin{align} a(n,t)&=

1
2

{\rme}-(q(n+1,t)\\ b(n,t)&=-

1
2

p(n,t) \end{align}

Model of one-dimensional crystal in solid-state physics, Langmuir oscillations in plasma, quantum cohomology; notable for being a completely integrable system

Engineering

NameOrderEquationApplicationsReference
Duffing equation2
d2x
dt2

+\mu

dx
dt

+\alphax+\betax3=\gamma\cos\omegat

Oscillators, hysteresis, chaotic dynamical systems[43]
Lewis regulator2

y''+(1-

y)y' + y = 0Oscillators[44]
Liénard equation2

{d2x\overdt2}+f(x){dx\overdt}+g(x)=0

with

f

odd and

g

even
Oscillators, electrical engineering, dynamical systems[45]
Rayleigh equation2

y''+F(y')+y=0

Oscillators (especially auto-oscillation), acoustics; the Van der Pol equation is a Rayleigh equation[46]
Van der Pol equation2

{d2x\overdt2}-\mu(1-x2){dx\overdt}+x=0

Oscillators, electrical engineering, chaotic dynamical systems[47]

Chemistry

NameOrderEquationApplicationsReference
Brusselator1

\begin{align} {d\overdt}\left\{X\right\}&=\left\{A\right\}+\left\{X\right\}2\left\{Y\right\}-\left\{B\right\}\left\{X\right\}-\left\{X\right\}\\ {d\overdt}\left\{Y\right\}&=\left\{B\right\}\left\{X\right\}-\left\{X\right\}2\left\{Y\right\} \end{align}

A type of autocatalytic reaction modelled at constant concentration[48]
Oregonator1

\begin{align}

d[X]
dt

&=kI[A][Y]-kII[X][Y]+kIII[A][X]-2kIV[X]2\\

d[Y]
dt

&=-kI[A][Y]-kII[X][Y]+

1
2

fkV[B][Z]\\

d[Z]
dt

&=2kIII[A][X]-kV[B][Z] \end{align}

A type of autocatalytic reaction modelled at constant concentration[49]

Biology and medicine

NameOrderEquationApplicationsReference
Allee effect1
dN
dt

=-rN\left(1-

N
A

\right)\left(1-

N
K

\right)

Population biology[50]
Arditi–Ginzburg equations1
\begin{align} dN
dt

&=f(N)N-g{\left(\tfracNP\right)}P\\

dP
dt

&=eg{\left(\tfracNP\right)}P-uP \end{align}

Population dynamics[51]
FitzHugh–Nagumo model or Bonhoeffer-van der Pol model1
\begin{align} v&=v-
v3
3

-w+RI\rm\\ \tau

w

&=v+a-bw \end{align}

Action potentials in neurons, oscillators
Hodgkin-Huxley equations1

\begin{align} I&=

C
m{d
V

m}{{d}t}+

4(V
\bar{g}
m

-VK)+

3h(V
\bar{g}
m

-VNa)+\bar{g}l(Vm-

V
l)\\ dn
dt

&=\alphan(Vm)(1-n)-\betan(Vm)n\\

dm
dt

&=\alpham(Vm)(1-m)-\betam(Vm)m\\

dh
dt

&=\alphah(Vm)(1-h)-\betah(Vm)h \end{align}

Action potentials in neurons[52]
Kuramoto model1
d\thetai
dt

=\omegai+

1
N
N
\sum
j=1

Kij\sin(\thetaj-\thetai),    i=1\ldotsN

Synchronization, coupled oscillators[53]
1
\begin{align} dx
dt

&=\alphax-\betaxy\\

dy
dt

&=\deltaxy-\gammay \end{align}

Population dynamics[54]
Price equation1

{d\over{dt}}E(x)=\underbrace{Cov(x,f)}Selectioneffect+\underbrace{E(

x

)}Dynamiceffect

Evolution and change in allele frequency over time[55]
SIR model1
\begin{align} dS
dt

&=-\betaSI\\

dI
dt

&=\betaSI-\gammaI\\

dR
dt

&=\gammaI\end{align}

Epidemiology[56]

Economics and finance

NameOrderEquationApplicationsReference
Bass diffusion model1
dF
dt

=(1-F)(p+qF)

A Riccati equation used in marketing to describe product adoption[57]
Ramsey–Cass–Koopmans model1
\begin{align} k

&=f(k)-(n+\delta)k-c\\

c

&=\sigma(c)\left[fk(k)-\delta-\rho\right]c \end{align}

Neoclassical economics model of economic growth[58] [59]
Solow–Swan model1
k

(t)=sk(t)\alpha-(n+g+\delta)k(t)

Model of long run economic growth[60]

See also

Notes and References

  1. Panayotounakos . Dimitrios E. . Zarmpoutis . Theodoros I. . 2011-10-26 . Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations) . International Journal of Mathematics and Mathematical Sciences . en . 2011 . e387429 . 10.1155/2011/387429 . free . 0161-1712.
  2. Web site: Weisstein . Eric W. . Bernoulli Differential Equation . 2024-06-02 . mathworld.wolfram.com . en.
  3. Book: Hille, Einar . Lectures on ordinary differential equations . 1894 . . 978-0201530834 . 675.
  4. Web site: Weisstein . Eric W. . Briot-Bouquet Equation . 2024-06-03 . mathworld.wolfram.com . en.
  5. Book: Zwillinger, Daniel . Handbook of differential equations . 1998 . Academic Press . 978-0-12-784396-4 . 3rd . San Diego, CA . 257.
  6. Jones . G.Stephen . June 1962 . On the nonlinear differential-difference equation f′(x) = −αf(x − 1) . Journal of Mathematical Analysis and Applications . en . 4 . 3 . 440–469 . 10.1016/0022-247X(62)90041-0.
  7. Marshall . Susan H. . Smith . Donald R. . 2013 . Feedback, Control, and the Distribution of Prime Numbers . Mathematics Magazine . 86 . 3 . 189–203 . 10.4169/math.mag.86.3.189 . 10.4169/math.mag.86.3.189 . 0025-570X.
  8. Chrystal . 1897 . XXIV.—On the p-discriminant of a Differential Equation of the First Order, and on Certain Points in the General Theory of Envelopes connected therewith . Transactions of the Royal Society of Edinburgh . 38 . 4 . 803–824 . 10.1017/s0080456800033494 . 0080-4568.
  9. Web site: Clairaut equation - Encyclopedia of Mathematics . 2024-06-02 . encyclopediaofmath.org.
  10. Web site: Weisstein . Eric W. . d'Alembert's Equation . 2024-06-02 . mathworld.wolfram.com . en.
  11. Web site: Darboux equation - Encyclopedia of Mathematics . 2024-06-02 . encyclopediaofmath.org.
  12. Book: Zwillinger, Daniel . Handbook of differential equations . 1998 . Academic Press . 978-0-12-784396-4 . 3rd . San Diego, CA . 180.
  13. Web site: Weisstein . Eric W. . Euler Differential Equation . 2024-06-02 . mathworld.wolfram.com . en.
  14. Web site: Jacobi equation - Encyclopedia of Mathematics . 2024-06-03 . encyclopediaofmath.org.
  15. Löwner . Karl . March 1923 . Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I . Mathematische Annalen . de . 89 . 1–2 . 103–121 . 10.1007/BF01448091 . 0025-5831.
  16. Web site: Weisstein . Eric W. . Logistic Equation . 2024-06-03 . mathworld.wolfram.com . en.
  17. Lorenz . Edward N. . 1 March 1963 . Deterministic Nonperiodic Flow . Journal of the Atmospheric Sciences . en . 20 . 2 . 130–141 . 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 . 1963JAtS...20..130L . 0022-4928.
  18. Donaldson . S. K. . September 1984 . Nahm's equations and the classification of monopoles . Communications in Mathematical Physics . en . 96 . 3 . 387–407 . 10.1007/BF01214583 . 1984CMaPh..96..387D . 0010-3616.
  19. Web site: Painlevé-type equations - Encyclopedia of Mathematics . 2024-06-03 . encyclopediaofmath.org.
  20. Rabinovich . M. I. . Fabrikant . A. L. . 1979-08-01 . Stochastic wave self-modulation in nonequilibrium media . Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki . 77 . 617–629 . 1979ZhETF..77..617R . 0044-4510.
  21. Web site: Riccati equation - Encyclopedia of Mathematics . 2024-06-03 . encyclopediaofmath.org.
  22. Mehta . B. N . Aris . R . 1971-12-01 . A note on a form of the Emden-Fowler equation . Journal of Mathematical Analysis and Applications . 36 . 3 . 611–621 . 10.1016/0022-247X(71)90043-6 . 0022-247X.
  23. Lin . Hao . Storey . Brian D. . Szeri . Andrew J. . 2002-02-10 . Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh–Plesset equation . Journal of Fluid Mechanics . en . 452 . 1 . 145–162 . 10.1017/S0022112001006693 . 2002JFM...452..145L . 0022-1120.
  24. Boyd . John P. . January 2008 . The Blasius Function: Computations Before Computers, the Value of Tricks, Undergraduate Projects, and Open Research Problems . SIAM Review . en . 50 . 4 . 791–804 . 10.1137/070681594 . 2008SIAMR..50..791B . 0036-1445.
  25. Book: Chandrasekhar, Subrahmanyan . An introduction to the study of stellar structure . 1970 . Dover Publ . 978-0-486-60413-8 . Unabr. and corr. republ. of orig. publ. 1939 by Univ. of Chicago Pr . Dover books on astronomy . New York.
  26. Hastings . S. P. . McLeod . J. B. . 1980 . A boundary value problem associated with the second painlevé transcendent and the Korteweg-de Vries equation . Archive for Rational Mechanics and Analysis . en . 73 . 1 . 31–51 . 10.1007/BF00283254 . 1980ArRMA..73...31H . 0003-9527.
  27. Morris . Richard Michael . Leach . Peter Gavin Lawrence . 2015 . The Ermakov-Pinney Equation: its varied origins and the effects of the introduction of symmetry-breaking functions . math.CA . 1510.08992.
  28. Hawkins . Rachael M. . Lidsey . James E. . 2002-07-30 . Ermakov-Pinney equation in scalar field cosmologies . Physical Review D . 66 . 2 . 023523 . 10.1103/PhysRevD.66.023523. astro-ph/0112139 . 2002PhRvD..66b3523H .
  29. Stewartson . K. . July 1954 . Further solutions of the Falkner-Skan equation . Mathematical Proceedings of the Cambridge Philosophical Society . en . 50 . 3 . 454–465 . 10.1017/S030500410002956X . 1954PCPS...50..454S . 0305-0041.
  30. Nemiroff . Robert J. . Patla . Bijunath . 2008-03-01 . Adventures in Friedmann cosmology: A detailed expansion of the cosmological Friedmann equations . American Journal of Physics . en . 76 . 3 . 265–276 . 10.1119/1.2830536 . astro-ph/0703739 . 2008AmJPh..76..265N . 0002-9505.
  31. Web site: Heisenberg representation - Encyclopedia of Mathematics . 2024-06-03 . encyclopediaofmath.org.
  32. Orverem . J. M. . Haruna . Y. . 2023-07-08 . The Generalized Sundman Transformation and Differential Forms for Linearizing the Variable Frequency Oscillator Equation and the Modified Ivey's Equation . Fudma Journal of Sciences . 7 . 3 . 167–170 . 10.33003/fjs-2023-0703-1859 . 2616-1370. free .
  33. Iacono . Roberto . Boyd . John P. . July 2015 . The Kidder Equation . Studies in Applied Mathematics . en . 135 . 1 . 63–85 . 10.1111/sapm.12073 . 2027.42/111960 . 0022-2526. free .
  34. Krogdahl . Wasley S. . July 1955 . Stellar Pulsation as a Limit-Cycle Phenomenon. . The Astrophysical Journal . en . 122 . 43 . 10.1086/146052 . 1955ApJ...122...43K . 0004-637X.
  35. Rosenblat . S. . Shepherd . J. . July 1975 . On the Asymptotic Solution of the Lagerstrom Model Equation . SIAM Journal on Applied Mathematics . en . 29 . 1 . 110–120 . 10.1137/0129012 . 0036-1399.
  36. Lane . H. J. . 1870-07-01 . On the theoretical temperature of the Sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment . American Journal of Science . en . s2-50 . 148 . 57–74 . 10.2475/ajs.s2-50.148.57 . 1870AmJS...50...57L . 0002-9599.
  37. Liñán . Amable . July 1974 . The asymptotic structure of counterflow diffusion flames for large activation energies . Acta Astronautica . en . 1 . 7–8 . 1007–1039 . 10.1016/0094-5765(74)90066-6. 1974AcAau...1.1007L .
  38. Lima . F. M. S. . Arun . P. . 2006-10-01 . An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime . American Journal of Physics . en . 74 . 10 . 892–895 . 10.1119/1.2215616 . physics/0510206 . 2006AmJPh..74..892L . 0002-9505.
  39. Chambré . P. L. . 1952-11-01 . On the Solution of the Poisson-Boltzmann Equation with Application to the Theory of Thermal Explosions . The Journal of Chemical Physics . en . 20 . 11 . 1795–1797 . 10.1063/1.1700291 . 1952JChPh..20.1795C . 0021-9606.
  40. February 1933 . The air pressure on a cone moving at high speeds. . Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character . en . 139 . 838 . 278–297 . 10.1098/rspa.1933.0017 . 1933RSPSA.139..278T . 0950-1207 . Taylor . G. I. . MacColl . J. W. . free .
  41. Davis, Harold Thayer. Introduction to nonlinear differential and integral equations. Courier Corporation, 1962.
  42. Feynman . R. P. . Metropolis . N. . Teller . E. . 1949-05-15 . Equations of State of Elements Based on the Generalized Fermi-Thomas Theory . Physical Review . en . 75 . 10 . 1561–1573 . 10.1103/PhysRev.75.1561 . 1949PhRv...75.1561F . 0031-899X.
  43. Web site: Weisstein . Eric W. . Duffing Differential Equation . 2024-06-02 . mathworld.wolfram.com . en.
  44. Book: Hagedorn . Peter . Non-linear oscillations . Stadler . Wolfram . 1988 . Oxford University Press . 978-0-19-856142-2 . The Oxford engineering science series . New York . 163 .
  45. Villari . Gabriele . April 1987 . On the qualitative behaviour of solutions of Liénard equation . Journal of Differential Equations . en . 67 . 2 . 269–277 . 10.1016/0022-0396(87)90150-1. 1987JDE....67..269V .
  46. Web site: Rayleigh equation - Encyclopedia of Mathematics . 2024-06-03 . encyclopediaofmath.org.
  47. Web site: Weisstein . Eric W. . van der Pol Equation . 2024-06-02 . mathworld.wolfram.com . en.
  48. Prigogine . I. . Lefever . R. . 1968-02-15 . Symmetry Breaking Instabilities in Dissipative Systems. II . The Journal of Chemical Physics . en . 48 . 4 . 1695–1700 . 10.1063/1.1668896 . 1968JChPh..48.1695P . 0021-9606.
  49. Tyson† . John J. . 1979 . Oscillations, bistability, and echo waves in models of the Belousov-Zhabotinskii reaction . Annals of the New York Academy of Sciences . en . 316 . 1 . 279–295 . 10.1111/j.1749-6632.1979.tb29475.x . 1979NYASA.316..279T . 0077-8923.
  50. Cushing . J. M. . Hudson . Jarred T. . March 2012 . Evolutionary dynamics and strong Allee effects . Journal of Biological Dynamics . en . 6 . 2 . 941–958 . 10.1080/17513758.2012.697196 . 22881366 . 2012JBioD...6..941C . 1751-3758. free .
  51. Arditi . Roger . Ginzburg . Lev R. . 9 August 1989 . Coupling in predator-prey dynamics: Ratio-Dependence . Journal of Theoretical Biology . en . 139 . 3 . 311–326 . 10.1016/S0022-5193(89)80211-5. 1989JThBi.139..311A .
  52. Hodgkin . A. L. . Huxley . A. F. . 1952-08-28 . A quantitative description of membrane current and its application to conduction and excitation in nerve . The Journal of Physiology . en . 117 . 4 . 500–544 . 10.1113/jphysiol.1952.sp004764 . 0022-3751 . 1392413 . 12991237.
  53. Strogatz . Steven H. . 1 September 2000 . From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators . Physica D: Nonlinear Phenomena . en . 143 . 1–4 . 1–20 . 10.1016/S0167-2789(00)00094-4. 2000PhyD..143....1S . free .
  54. Web site: Weisstein . Eric W. . Lotka-Volterra Equations . 2024-06-02 . mathworld.wolfram.com . en.
  55. Frank . Steven A. . 7 August 1995 . George Price's contributions to evolutionary genetics . Journal of Theoretical Biology . en . 175 . 3 . 373–388 . 10.1006/jtbi.1995.0148. 7475081 . 1995JThBi.175..373F .
  56. August 1927 . A contribution to the mathematical theory of epidemics . Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character . en . 115 . 772 . 700–721 . 10.1098/rspa.1927.0118 . 1927RSPSA.115..700K . 0950-1207 . Kermack . W. O. . McKendrick . A. G. .
  57. Bass . Frank M. . 1 January 1969 . A New Product Growth for Model Consumer Durables . Management Science . en . 15 . 5 . 215–227 . 10.1287/mnsc.15.5.215 . 0025-1909.
  58. Book: Roe . Terry L. . Multisector growth models: theory and application . Smith . Rodney B. W. . Saracoǧlu . D. Șirin . 2010 . Springer . 978-0-387-77357-5 . New York . 56 . 288985452.
  59. Book: Blanchard . Olivier . Lectures on macroeconomics . Fischer . Stanley . 1989 . MIT Press . 978-0-262-02283-5 . Cambridge, Mass . 40.
  60. Book: Agénor, Pierre-Richard . The economics of adjustment and growth . 2004 . Harvard University Press . 978-0-674-01578-4 . 2nd . Cambridge, Mass . 439–460.