This article contains a list of sample Hilbert-style deductive systems for propositional logics.
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have been formulated. They differ in the choice of basic connectives used, which in all cases have to be functionally complete (i.e. able to express by composition all n-ary truth tables), and in the exact complete choice of axioms over the chosen basis of connectives.
The formulations here use implication and negation
\{\to,\neg\}
A,A\toB | |
B |
.
A\to(B\toA)
(A\to(B\toC))\to((A\toB)\to(A\toC))
(A\to(B\toC))\to(B\to(A\toC))
(A\toB)\to(\negB\to\negA)
\neg\negA\toA
A\to\neg\negA
A\to(B\toA)
(A\to(B\toC))\to(B\to(A\toC))
(B\toC)\to((A\toB)\to(A\toC))
A\to(\negA\toB)
(A\toB)\to((\negA\toB)\toB)
Łukasiewicz's axiom systems:[1]
(A\toB)\to((B\toC)\to(A\toC))
(\negA\toA)\toA
A\to(\negA\toB)
((A\toB)\toC)\to(\negA\toC)
((A\toB)\toC)\to(B\toC)
(\negA\toC)\to((B\toC)\to((A\toB)\toC))
A\to(B\toA)
(A\to(B\toC))\to((A\toB)\to(A\toC))
(\negA\to\negB)\to(B\toA)
Arai's axiom system:[2]
(A\toB)\to((B\toC)\to(A\toC))
A\to(\negA\toB)
(\negA\toB)\to((B\toA)\toA)
Łukasiewicz and Tarski's axiom system:[3]
[(A\to(B\toA))\to([(\negC\to(D\to\negE))\to[(C\to(D\toF))\to((E\toD)\to(E\toF))]]\toG)]\to(H\toG)
((((A\toB)\to(\negC\to\negD))\toC)\toE)\to((E\toA)\to(D\toA))
A\to(B\toA)
(A\to(B\toC))\to((A\toB)\to(A\toC))
(\negA\to\negB)\to((\negA\toB)\toA)
A\to(B\toA)
(A\toB)\to((B\toC)\to(A\toC))
(A\to(B\toC))\to(B\to(A\toC))
\neg\negA\toA
(A\to\negA)\to\negA
(A\to\negB)\to(B\to\negA)
\negA\to(A\toB)
A\to(B\to(C\toA))
(\negA\toC)\to((B\toC)\to((A\toB)\toC))
(A\toB)\to(\negB\to(A\toC))
A\to(B\to(C\toA))
(\negA\toB)\to((A\toB)\toB)
Instead of negation, classical logic can also be formulated using the functionally complete set
\{\to,\bot\}
Tarski–Bernays–Wajsberg axiom system:
(A\toB)\to((B\toC)\to(A\toC))
A\to(B\toA)
((A\toB)\toA)\toA
\bot\toA
Church's axiom system:
A\to(B\toA)
(A\to(B\toC))\to((A\toB)\to(A\toC))
((A\to\bot)\to\bot)\toA
Meredith's axiom systems:
((((A\toB)\to(C\to\bot))\toD)\toE)\to((E\toA)\to(C\toA))
((A\toB)\to((\bot\toC)\toD))\to((D\toA)\to(E\to(F\toA)))
Instead of implication, classical logic can also be formulated using the functionally complete set
\{\neg,\lor\}
A,\negA\lorB | |
B |
.
Russell–Bernays axiom system:
\neg(\negB\lorC)\lor(\neg(A\lorB)\lor(A\lorC))
\neg(A\lorB)\lor(B\lorA)
\negA\lor(B\lorA)
\neg(A\lorA)\lorA
Meredith's axiom systems:[8]
\neg(\neg(\negA\lorB)\lor(C\lor(D\lorE)))\lor(\neg(\negD\lorA)\lor(C\lor(E\lorA)))
\neg(\neg(\negA\lorB)\lor(C\lor(D\lorE)))\lor(\neg(\negE\lorD)\lor(C\lor(A\lorD)))
\neg(\neg(\negA\lorB)\lor(C\lor(D\lorE)))\lor(\neg(\negC\lorA)\lor(E\lor(D\lorA)))
Dually, classical propositional logic can be defined using only conjunction and negation.
Rosser J. Barkley created a system based on conjunction and negation
\{\wedge,\neg\}
C → D
\neg(C\wedge\negD)
A → A\wedgeA
A\wedgeB → A
\left(A → B\right) → \left(\neg\left(B\wedgeC\right) → \neg\left(C\wedgeA\right)\right)
If we don't use the abbreviation, we get the axiom schemes in the following form:
\neg(A\wedge\neg(A\wedgeA))
\neg((A\wedgeB)\wedge\negA)
\neg\left(\neg\left(A\wedge\negB\right)\wedge\neg\neg\left(\neg\left(B\wedgeC\right)\wedge\neg\neg\left(C\wedgeA\right)\right)\right)
Also, modus ponens becomes:
A,\neg\left(A\wedge\negB\right) | |
B |
Because Sheffer's stroke (also known as NAND operator) is functionally complete, it can be used to create an entire formulation of propositional calculus. NAND formulations use a rule of inference called Nicod's modus ponens:
A,A\mid(B\midC) | |
C |
.
(A\mid(B\midC))\mid[(E\mid(E\midE))\mid((D\midB)\mid[(A\midD)\mid(A\midD)])]
(A\mid(B\midC))\mid[(D\mid(D\midD))\mid((D\midB)\mid[(A\midD)\mid(A\midD)])]
(A\mid(B\midC))\mid[(A\mid(C\midA))\mid((D\midB)\mid[(A\midD)\mid(A\midD)])]
(A\mid(B\midC))\mid[((D\midC)\mid[(A\midD)\mid(A\midD)])\mid(A\mid(A\midB))]
(A\mid(B\midC))\mid[(A\mid(B\midC))\mid((D\midC)\mid[(C\midD)\mid(A\midD)])]
(A\mid(B\midC))\mid[([(B\midD)\mid(A\midD)]\mid(D\midB))\mid((C\midB)\midA)]
Computer analysis by Argonne has revealed over 60 additional single axiom systems that can be used to formulate NAND propositional calculus.[7]
The implicational propositional calculus is the fragment of the classical propositional calculus which only admits the implication connective. It is not functionally complete (because it lacks the ability to express falsity and negation) but it is however syntactically complete. The implicational calculi below use modus ponens as an inference rule.
Bernays–Tarski axiom system:[11]
A\to(B\toA)
(A\toB)\to((B\toC)\to(A\toC))
((A\toB)\toA)\toA
[(A\to(B\toA))\to[([((C\toD)\toE)\toF]\to[(D\toF)\to(C\toF)])\toG]]\toG
[(A\toB)\to((C\toD)\toE)]\to([F\to((C\toD)\toE)]\to[(A\toF)\to(D\toE)])
((A\toB)\to(C\toD))\to(E\to((D\toA)\to(C\toA)))
((A\toB)\to(C\toD))\to((D\toA)\to(E\to(C\toA)))
((A\toB)\toC)\to((C\toA)\to(D\toA))
Intuitionistic logic is a subsystem of classical logic. It is commonly formulated with
\{\to,\land,\lor,\bot\}
A\to(B\toA)
(A\to(B\toC))\to((A\toB)\to(A\toC))
(A\landB)\toA
(A\landB)\toB
A\to(B\to(A\landB))
A\to(A\lorB)
B\to(A\lorB)
(A\toC)\to((B\toC)\to((A\lorB)\toC))
\bot\toA
\{\to,\land,\lor,\neg\}
(A\to\negA)\to\negA
\negA\to(A\toB)
Intermediate logics are in between intuitionistic logic and classical logic. Here are a few intermediate logics:
\negA\lor\neg\negA.
(A\toB)\lor(B\toA).
The positive implicational calculus is the implicational fragment of intuitionistic logic. The calculi below use modus ponens as an inference rule.
Łukasiewicz's axiom system:
A\to(B\toA)
(A\to(B\toC))\to((A\toB)\to(A\toC))
E\to((A\toB)\to(((D\toA)\to(B\toC))\to(A\toC)))
A\to(B\toA)
(A\toB)\to((A\to(B\toC))\to(A\toC))
((A\toB)\toC)\to(D\to((B\to(C\toE))\to(B\toE)))
(A\to(A\toB))\to(A\toB)
(B\toC)\to((A\toB)\to(A\toC))
(A\to(B\toC))\to(B\to(A\toC))
A\to(B\toA)
(A\to(A\toB))\to(A\toB)
(A\toB)\to((B\toC)\to(A\toC))
A\to(B\toA)
A\toA
(A\toB)\to((B\toC)\to(A\toC))
(B\toC)\to((A\toB)\to(A\toC))
(A\to(A\toB))\to(A\toB)
Positive propositional calculus is the fragment of intuitionistic logic using only the (non functionally complete) connectives
\{\to,\land,\lor\}
(A\landB)\toA
(A\landB)\toB
A\to(B\to(A\landB))
A\to(A\lorB)
B\to(A\lorB)
(A\toC)\to((B\toC)\to((A\lorB)\toC))
\leftrightarrow
(A\leftrightarrowB)\to(A\toB)
(A\leftrightarrowB)\to(B\toA)
(A\toB)\to((B\toA)\to(A\leftrightarrowB))
Johansson's minimal logic can be axiomatized by any of the axiom systems for positive propositional calculus and expanding its language with the nullary connective
\bot
\{\to,\land,\lor,\neg\}
(A\to\negB)\to(B\to\negA)
(A\toB)\to(\negB\to\negA)
A\to\neg\negA
Intuitionistic logic in language with negation can be axiomatized over the positive calculus by the pair of axioms
(A\to\negB)\to(B\to\negA)
\negA\to(A\toB)
(A\to\negA)\to\negA
\negA\to(A\toB)
Classical logic in the language
\{\to,\land,\lor,\neg\}
(\negA\to\negB)\to(B\toA)
(A\to\negB)\to(B\to\negA)
\neg\negA\toA
Fitch calculus takes any of the axiom systems for positive propositional calculus and adds the axioms[15]
\negA\to(A\toB)
A\leftrightarrow\neg\negA
\neg(A\lorB)\leftrightarrow(\negA\land\negB)
\neg(A\landB)\leftrightarrow(\negA\lor\negB)
Equivalential calculus is the subsystem of classical propositional calculus that only allows the (functionally incomplete) equivalence connective, denoted here as
\equiv
A,A\equivB | |
B |
.
Iséki's axiom system:[16]
((A\equivC)\equiv(B\equivA))\equiv(C\equivB)
(A\equiv(B\equivC))\equiv((A\equivB)\equivC)
Iséki–Arai axiom system:[17]
A\equivA
(A\equivB)\equiv(B\equivA)
(A\equivB)\equiv((B\equivC)\equiv(A\equivC))
Arai's axiom systems;
(A\equiv(B\equivC))\equiv((A\equivB)\equivC)
((A\equivC)\equiv(B\equivA))\equiv(C\equivB)
(A\equivB)\equiv(B\equivA)
((A\equivC)\equiv(B\equivA))\equiv(C\equivB)
Łukasiewicz's axiom systems:[18]
(A\equivB)\equiv((C\equivB)\equiv(A\equivC))
(A\equivB)\equiv((A\equivC)\equiv(C\equivB))
(A\equivB)\equiv((C\equivA)\equiv(B\equivC))
Meredith's axiom systems:[18]
((A\equivB)\equivC)\equiv(B\equiv(C\equivA))
A\equiv((B\equiv(A\equivC))\equiv(C\equivB))
(A\equiv(B\equivC))\equiv(C\equiv(A\equivB))
(A\equivB)\equiv(C\equiv((B\equivC)\equivA))
(A\equivB)\equiv(C\equiv((C\equivB)\equivA))
((A\equiv(B\equivC))\equivC)\equiv(B\equivA)
((A\equiv(B\equivC))\equivB)\equiv(C\equivA)
Kalman's axiom system:[18]
A\equiv((B\equiv(C\equivA))\equiv(C\equivB))
Winker's axiom systems:[18]
A\equiv((B\equivC)\equiv((A\equivC)\equivB))
A\equiv((B\equivC)\equiv((C\equivA)\equivB))
XCB axiom system:[18]
A\equiv(((A\equivB)\equiv(C\equivB))\equivC)